Community Medication Prescription and Dispense (CMPD)

Trial Implementation

Date: October 11, 2013
Author: IHE Pharmacy Technical Committee
Email: pharmacy@ihe.net
25 Foreword

This is a supplement to the forthcoming IHE Pharmacy Technical Framework. Each supplement undergoes a process of public comment and trial implementation before being incorporated into the volumes of the Technical Frameworks.

This supplement is published on October 11, 2013 for Trial Implementation and may be available for testing at subsequent IHE Connectathons. The supplement may be amended based on the results of testing. Following successful testing it will be incorporated into the forthcoming Pharmacy Technical Framework. Comments are invited and may be submitted at http://www.ihe.net/Pharmacy_Public_Comments.

This supplement describes changes to the existing technical framework documents.

“Boxed” instructions like the sample below indicate to the Volume Editor how to integrate the relevant section(s) into the relevant Technical Framework volume.

Amend section X.X by the following:

Where the amendment adds text, make the added text bold underline. Where the amendment removes text, make the removed text bold strikethrough. When entire new sections are added, introduce with editor’s instructions to “add new text” or similar, which for readability are not bolded or underlined.

General information about IHE can be found at: http://www.ihe.net.

Information about the IHE Pharmacy domain can be found at: http://www.ihe.net/IHE_Domains.

Information about the organization of IHE Technical Frameworks and Supplements and the process used to create them can be found at: http://www.ihe.net/IHE_Process and http://www.ihe.net/Profiles.

The current version of the IHE Pharmacy Technical Framework can be found at: http://www.ihe.net/Technical_Frameworks.
CONTENTS

Introduction ... 5
Open Issues and Questions .. 6
Closed Issues .. 6
Volume 1 – Integration Profiles ... 8
 1.n Copyright Permission ... 8
 2.1 Dependencies among Integration Profiles ... 8
 2.2.4 Community Medication Prescription and Dispense Integration Profile 8
4 Community Medication Prescription and Dispense Integration Profile 10
 4.1 Actors/Transactions... 11
 4.1.1 Actors ... 13
 4.1.1.1 Community Pharmacy Manager ... 13
 4.1.1.2 Prescription Placer .. 13
 4.1.1.3 Pharmaceutical Adviser .. 13
 4.1.1.4 Medication Dispenser ... 13
 4.1.1.5 Repository actors .. 13
 4.1.2 Transactions ... 14
 4.1.2.1 Query Pharmacy Documents .. 14
 4.1.2.2 Registry Stored Query .. 15
 4.1.2.3 Provide and Register Document Set-b ... 15
 4.1.2.4 Retrieve Document Set ... 16
 4.2 CMPD Integration Profile Options .. 16
 4.2.1 Workflow Management Option ... 16
 4.3 CMPD Actor Groupings and Profile Interactions .. 16
 4.4 CMPD Process Flow .. 17
 4.4.1 Use Case community pharmacy-active substance, publish & pull (Scenario 1: “Including validation step”) ... 17
 4.4.1.1 Story Board ... 19
 4.4.1.2 Sequence Diagram .. 19
 4.4.2 Use Case community pharmacy-active substance, publish & pull (Scenario 2: “Not including validation step”) ... 20
 4.4.2.1 Story Board ... 22
 4.4.2.2 Sequence Diagram .. 22
 4.5 CMPD Security Considerations ... 23
 4.6 CMPD Implementation Scenarios ... 24
 4.6.1 Usage of CMPD in a “single-domain” scenario ... 24
 4.6.1.1 Demonstration of use case 1 in example scenario (simple) 26
 4.6.2 Usage of CMPD in a “multi-domain” scenario .. 33
 4.6.2.1 Demonstration of use case 1 in example scenario (complex) 35
Appendix A Actor Summary Definitions ... 42
Appendix B Transaction Summary Definitions ... 42
Volume 2 – Transactions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 IHE Transactions</td>
<td>43</td>
</tr>
<tr>
<td>3.1 Query Pharmacy Documents [PHARM-1]</td>
<td>43</td>
</tr>
<tr>
<td>3.1.1 Scope</td>
<td>43</td>
</tr>
<tr>
<td>3.1.2 Use Case Roles</td>
<td>44</td>
</tr>
<tr>
<td>3.1.3 Referenced Standard</td>
<td>44</td>
</tr>
<tr>
<td>3.1.4 Interaction Diagram</td>
<td>44</td>
</tr>
<tr>
<td>3.1.4.1 Query Pharmacy Documents</td>
<td>44</td>
</tr>
<tr>
<td>3.1.4.1.1 Trigger Events</td>
<td>45</td>
</tr>
<tr>
<td>3.1.4.1.2 Message Semantics</td>
<td>45</td>
</tr>
<tr>
<td>3.1.4.1.2.1 Required Queries</td>
<td>45</td>
</tr>
<tr>
<td>3.1.4.1.2.2 Stored Query IDs</td>
<td>54</td>
</tr>
<tr>
<td>3.1.4.1.2.3 Web Services Transport</td>
<td>54</td>
</tr>
<tr>
<td>3.1.4.1.3 Expected Actions</td>
<td>57</td>
</tr>
<tr>
<td>3.1.4.1.3.1 Sample Query Request</td>
<td>57</td>
</tr>
<tr>
<td>3.1.4.1.3.2 Sample Query Response</td>
<td>58</td>
</tr>
<tr>
<td>3.1.5 Security Considerations</td>
<td>61</td>
</tr>
<tr>
<td>3.1.5.1 Security Audit Considerations</td>
<td>61</td>
</tr>
<tr>
<td>3.1.5.1.1 Querying actor audit message</td>
<td>62</td>
</tr>
<tr>
<td>3.1.5.1.2 Community Pharmacy Manager audit message</td>
<td>64</td>
</tr>
<tr>
<td>3.1.5.1.(z) Actor Specific Security Considerations</td>
<td>65</td>
</tr>
<tr>
<td>4 Workflow Definitions</td>
<td>66</td>
</tr>
<tr>
<td>4.1 Community Medication Prescription and Dispense Workflow Definition (CMPD-WD)</td>
<td>66</td>
</tr>
<tr>
<td>4.1.1 Actors and Grouping</td>
<td>66</td>
</tr>
<tr>
<td>4.1.2 XDW Workflow Document – Common Attributes</td>
<td>67</td>
</tr>
<tr>
<td>4.1.3 Workflow Task Definition</td>
<td>67</td>
</tr>
<tr>
<td>4.1.3.1 Task: Ordering</td>
<td>70</td>
</tr>
<tr>
<td>4.1.3.2 Task: Validation</td>
<td>73</td>
</tr>
<tr>
<td>4.1.3.3 Task: Dispensing</td>
<td>77</td>
</tr>
</tbody>
</table>

Glossary | 81

4 Workflow Definitions | 66

Glossary | 81
Introduction

The Community Medication Prescription and Dispense Integration Profile (CMPD) describes the process of prescription, validation and dispense of medication in the community domain. This document is a detailed description of the generic implementation structure defined in the Common Parts document\(^1\).

In general, the medication business process consists of four distinct processes, which have to be connected through interactions that transfer information and/or guide the workflow. The following figure shows this flow:

In the Community Pharmacy domain, the process of “administration of medication” can usually not be governed by IT based systems so just the processes “Prescription”, “Pharmaceutical Advice” and “Dispense” are covered by the Community Pharmacy Prescription and Dispense Profile only.

The CMPD profile is intended to be used in the context of the Pharmacy Content Profiles\(^2\):

- Pharmacy Prescription Supplement (PRE)
- Pharmacy Pharmaceutical Advice Supplement (PADV)

\(^1\) This document is part of the IHE Pharmacy domain and can be obtained from the IHE web site.

\(^2\) These supplements are part of the IHE Pharmacy domain and can be obtained from the IHE web site.
These Content Profiles are based on the Patient Care Coordination (PCC) Technical Framework and define the semantic of the payload transported by the CMPD profile.

This supplement also references other documents. The reader should have already read and understood these documents:

1. PHARM Common parts document
2. IT Infrastructure Technical Framework Volume 1
3. IT Infrastructure Technical Framework Volume 2
4. IT Infrastructure Technical Framework Volume 3
5. HL7 and other standards documents referenced in this document

Open Issues and Questions

- The profile does not yet include the process step of getting the “current medication”, which is needed for checking interactions (ICAs) to the prescribed item.

- Grouping of XDW with the Community Pharmacy Manager: What, if the client-side actors (Prescription Placer, Pharmaceutical Adviser, Medication Dispenser) are not allowed to manage the workflow and this should be done by the CPM.

Closed Issues

- Question: Should be medication processes message or document-based? Decision at F2F meeting in Bordeaux (15./16.04.2010): Community domain is document based with XDS as persistence layer, Hospital domain will be message-based.

- Clarification to whitepaper: In community domain, the term “repository” in the whitepaper is intended to be interpreted as a technical system for persisting documents implementing XDS transactions as interface. XDS registry/repository systems as well as database or other persisting systems are likely to be used for this purpose.

- Changes to whitepaper:
 - “Consumer” actors will be removed, because they are just relaying transactions (don’t implement any own transactions). Sequence diagrams have been adapted.

3 The first four documents can be located on the IHE Website at http://ihe.net/Technical_Frameworks/. The remaining documents can be obtained from their respective publishers.
• The transient aspects of “Ordering” are excluded in the profile. This should be generally discussed together with ITI in conjunction with all other “Ordering/Workflow” topics (e.g., Lab, Referral, etc.). (see CP-PHARM-018_v5)
Volume 1 – Integration Profiles

1.n Copyright Permission

Add the following to sections 1.n:

Health Level Seven, Inc., has granted permission to the IHE to reproduce tables from the HL7 standard. The HL7 tables in this document are copyrighted by Health Level Seven, Inc. All rights reserved. Material drawn from these documents is credited where used.

2.1 Dependencies among Integration Profiles

Add the following to table 2-1

Community Pharmacy Prescription and Dispense CMPD	XDS	CMPD Actors are based on XDS Document Source, Document Consumer, Registry and Repository actors and use XDS transactions.	Required to manage query, submission and retrieve of documents.
Community Pharmacy Prescription and Dispense CMPD	ATNA	Each CMPD Actor shall be grouped with Secure Node or Secure Application Actor	Required due to XDS grouping.
Community Pharmacy Prescription and Dispense CMPD	CT	Each CMPD Actor shall be grouped with the Time Client actor	Required due to ATNA grouping.
Community Pharmacy Prescription and Dispense CMPD	XDW	Some CMPD actors can be optionally grouped with XDW Workflow Management	Optional due to XDW grouping

Add the following section to section 2.2

2.2.4 Community Medication Prescription and Dispense Integration Profile

The Community Medication Prescription and Dispense Integration Profile (CMPD) describes the process of prescription, validation and dispense of medication in the community domain.

The CMPD profile is intended to be used in the context of the Pharmacy Content Profiles:

- Pharmacy Prescription Supplement (PRE)
- Pharmacy Pharmaceutical Advice Supplement (PADV)
- Pharmacy Dispense Supplement (DIS)

4 These supplements are part of the IHE Pharmacy domain and can be obtained from the IHE web site.
These Content Profiles are based on the Patient Care Coordination (PCC) Technical Framework and define the semantic of the payload transported by the CMPD profile.

Add Section 4
4 Community Medication Prescription and Dispense Integration Profile

The Community Medication Prescription and Dispense Integration Profile (CMPD) describes the process of prescription, validation and dispense of medication in the community domain. In general, the medication business process consists of four distinct processes, which have to be connected through interactions that transfer information and/or guide the workflow. The following figure shows this flow:

Figure 4-1: Medication Prescription and Dispense Process

In the Community Pharmacy domain, the process of “administration of medication” can usually not be governed by IT based systems so just the processes “Prescription”, “Pharmaceutical Advice” and “Dispense” are covered by the Community Pharmacy Prescription and Dispense Profile only.

The CMPD profile is intended to be used in the context of the Pharmacy Content Profiles:\n
- Pharmacy Prescription Supplement (PRE)
- Pharmacy Pharmaceutical Advice Supplement (PADV)
- Pharmacy Dispense Supplement (DIS)

These supplements are part of the IHE Pharmacy domain and can be obtained from the IHE web site.
These Content Profiles are based on the Patient Care Coordination (PCC) Technical Framework and define the semantic of the payload transported by the CMPD profile.

4.1 Actors/Transactions

Figure 4.1-1 shows the actors directly involved in the Community Medication Prescription and Dispense Integration Profile and the relevant transactions between them. Other actors that may be indirectly involved due to their participation in the XDS integration profiles, etc., are not necessarily shown.

Important note
The Community Pharmacy Manager actor (CPM) is currently restricted to perform data “filtering” by the PHARM-1 “Query Pharmacy Documents” transaction as well as data “relaying” of the ITI-43 “Retrieve Document Set” transaction. All other XDS transactions are performed directly between the client actors (Prescription Placer, Pharmaceutical Adviser, Medication Dispenser) and the Registry/Repository actors (Prescription, Pharmaceutical Advice, Dispense repositories).

The “relaying” of transactions for client actors is not shown in this Actor diagram for readability. Please see chapter “CMPD Implementation scenarios” for details to the
usage of the “relaying” functionality of the CPM in case e.g., of a multi-domain implementation scenario.

Table 4.1-1 lists the transactions for each actor directly involved in the Community Medication Prescription and Dispense Profile. In order to claim support of this Integration Profile, an implementation must perform the required transactions (labeled “R”). Transactions labeled “O” are optional. A complete list of options defined by this Integration Profile and that implementations may choose to support is listed in Volume 1, Section 4.2.

Table 4.1-1: Community Medication Prescription and Dispense Integration Profile - Actors and Transactions

<table>
<thead>
<tr>
<th>Actors</th>
<th>Transactions</th>
<th>Optionality</th>
<th>Section in Vol. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Pharmacy Manager</td>
<td>Registry Stored Query (ITI-18) R ITI-TF-2a:3.18</td>
<td>R</td>
<td>ITI-TF-2a:3.18</td>
</tr>
<tr>
<td></td>
<td>Retrieve Document Set (ITI-43) R ITI-TF-2b:3.43</td>
<td>R</td>
<td>ITI-TF-2b:3.43</td>
</tr>
<tr>
<td></td>
<td>Query Pharmacy Documents (PHARM-1) R PHARM-TF-2:3.1</td>
<td>R</td>
<td>PHARM-TF-2:3.1</td>
</tr>
<tr>
<td>Prescription Placer</td>
<td>Registry Stored Query (ITI-18) R ITI-TF-2a:3.18</td>
<td>R</td>
<td>ITI-TF-2a:3.18</td>
</tr>
<tr>
<td></td>
<td>Provide and Register Document Set-b (ITI-41) R ITI-TF-2b:3.41</td>
<td>R</td>
<td>ITI-TF-2b:3.41</td>
</tr>
<tr>
<td></td>
<td>Retrieve Document Set (ITI-43) R ITI-TF-2b:3.43</td>
<td>R</td>
<td>ITI-TF-2b:3.43</td>
</tr>
<tr>
<td>Pharmaceutical Adviser</td>
<td>Registry Stored Query (ITI-18) R ITI-TF-2a:3.18</td>
<td>R</td>
<td>ITI-TF-2a:3.18</td>
</tr>
<tr>
<td></td>
<td>Provide and Register Document Set-b (ITI-41) R ITI-TF-2b:3.41</td>
<td>R</td>
<td>ITI-TF-2b:3.41</td>
</tr>
<tr>
<td></td>
<td>Retrieve Document Set (ITI-43) R ITI-TF-2b:3.43</td>
<td>R</td>
<td>ITI-TF-2b:3.43</td>
</tr>
<tr>
<td></td>
<td>Query Pharmacy Documents (PHARM-1) R PHARM-TF-2:3.1</td>
<td>R</td>
<td>PHARM-TF-2:3.1</td>
</tr>
<tr>
<td>Medication Dispenser</td>
<td>Registry Stored Query (ITI-18) R ITI-TF-2a:3.18</td>
<td>R</td>
<td>ITI-TF-2a:3.18</td>
</tr>
<tr>
<td></td>
<td>Provide and Register Document Set-b (ITI-41) R ITI-TF-2b:3.41</td>
<td>R</td>
<td>ITI-TF-2b:3.41</td>
</tr>
<tr>
<td></td>
<td>Retrieve Document Set (ITI-43) R ITI-TF-2b:3.43</td>
<td>R</td>
<td>ITI-TF-2b:3.43</td>
</tr>
<tr>
<td></td>
<td>Query Pharmacy Documents (PHARM-1) R PHARM-TF-2:3.1</td>
<td>R</td>
<td>PHARM-TF-2:3.1</td>
</tr>
<tr>
<td>Repository actors</td>
<td>Registry Stored Query (ITI-18) R ITI-TF-2a:3.18</td>
<td>R</td>
<td>ITI-TF-2a:3.18</td>
</tr>
<tr>
<td>Prescription</td>
<td>Provide and Register Document Set-b (ITI-41) R ITI-TF-2b:3.41</td>
<td>R</td>
<td>ITI-TF-2b:3.41</td>
</tr>
<tr>
<td>Pharmaceutical Advice Dispense</td>
<td>Retrieve Document Set (ITI-43) R ITI-TF-2b:3.43</td>
<td>R</td>
<td>ITI-TF-2b:3.43</td>
</tr>
</tbody>
</table>
4.1.1 Actors

4.1.1.1 Community Pharmacy Manager

The main role of this actor consists in providing the business logic for status management and other purposes. As a second role it acts as a “relaying role” where certain standard XDS communication is routed through for providing the possibility of applying project-specific business logic on it.

It provides special query-transactions which consuming actors (Prescription Placer, Pharmaceutical Adviser or Medication Dispenser) used for reducing the amount of data flowing to them. They return just “relevant” information for specific purposes (e.g., returning just all “active” prescriptions ready for being validated or dispensed together with all related documents). This actor is usually a system actor without human participation.

4.1.1.2 Prescription Placer

The main role of this actor consists in placing the prescription (initial or modified in case of a substitution of invalidation, for example). It sends the cancelation of the prescription or its discontinuation, as well. In order to fulfill this task, the Prescription Placer retrieves the current treatment of the patient and medication already dispensed recently.

4.1.1.3 Pharmaceutical Adviser

This actor is responsible for the validation of prescriptions from a pharmacist’s perspective. Therefore, it receives the initial prescription, validates it and sends it back (accepted, cancelled, modified, substitution of pharmaceutical product); therefore it provides the pharmaceutical advice. To perform this task it checks the current treatment.

Pharmaceutical Advisers (e.g., automated ICA check modules) may also provide “draft” advices which don’t affect the status of a prescription but serve as a foundation for the advice performed by another Pharmaceutical Adviser.

4.1.1.4 Medication Dispenser

This actor is responsible for the process of dispensing medication to the patient, fulfilling the prescription. Therefore it produces the information on the medication dispensed to the patient. In order to achieve this, it receives prescriptions already validated. It also confirms drug availability for administration and it receives the administration plan and administration reports. This actor may be implemented as the point of sale software of a community pharmacy or the hospital pharmacy module of a hospital information system. The human actor behind this system actor is usually a pharmacist or a pharmacist assistant.

4.1.1.5 Repository actors

Formally the Community Pharmacy process defines different “repositories” for Prescriptions, Pharmaceutical Advices and Dispenses, but they shall be seen as abstract repository-roles for
persisting the appropriate document types the documents, not as XDS repositories defined in the “Cross Document Sharing” (XDS) Integration Profile of the ITI Technical Framework.

This profile rather makes use of the XDS Profile for defining abstract XDS registry and repository actors for modeling the abstract repository-roles for real implementations.

Description of the abstract repository-roles:

- **Prescription Repository**
 - This repository contains the medication prescribed to the patient from the Prescription Placer and may receive updates to the current treatment (cancelations, changes, etc.). It also provides information about the current prescribed medication to other actors such as the Community Pharmacy Manager.

- **Pharmaceutical Advice Repository**
 - This repository contains the pharmaceutical advice issued by the Pharmaceutical Adviser (typically a pharmacist). It provides this information to other actors such as the Community Pharmacy Manager.

- **Dispensed Medication Repository**
 - This repository contains the medication actually dispensed to the patient; this information is received from the Medication Dispenser. The Dispensed Medication Repository provides the medication record of the patient to other actors such as the Community Pharmacy Manager.

Conforming to the ITI XDS Technical Framework, registry actors are used for storing metadata of the submitted documents, the repository actors store the actual documents.

Implementation scenarios in real-world projects will most likely differ from the topology of having exactly three repositories. They may vary from single XDS affinity domain scenarios with just one registry/repository system for storing all document-types to most complex scenarios including many different XDS affinity domains for covering the organizational and strategic need of separation of the participating parties (e.g., Prescribers and Pharmacists).

All mechanisms defined in the XDS Integration Profile for accessing XDS Registry/Repository systems apply and may be used for communicating, e.g., “Cross Community Access” (XCA).

4.1.2 Transactions

4.1.2.1 Query Pharmacy Documents

This transaction defines how a querying actor has to query the Community Pharmacy Manager for prescriptions (PRE) and their related documents. Related documents are Pharmaceutical Advice (PADV) and Dispense (DIS) documents.

Querying actors may be:

- Pharmaceutical Adviser
Specialized queries allow the finding of prescriptions and their related documents for specific purposes (e.g., for validation).

These are:

- **FindPrescriptionsForValidation**
 - Find prescriptions and their related documents containing Prescription Items ready to be validated

- **FindPrescriptionsForDispense**
 - Find prescriptions and their related documents containing Prescription Items ready to be dispensed

Both specialized queries can be parameterized to …

1. … either check the status of a given prescription (e.g., if the patient shows the printed prescription to the operator and the prescription ID can be read off it).
 In this case the ID of the given prescription is set in the query parameters - if the prescription is in the requested status (e.g., “ready for dispense”) it shows up in the query result (together with its related documents); otherwise the query result is empty which indicates that the given prescription is not in the requested status.

2. … or to search for prescriptions which are in a specific status (e.g., if the patient has no printed prescription and the implementation allows searching for prescriptions).
 In this case the query returns all prescriptions which are in the requested status (e.g., “ready for dispense”). The operator can choose and pick the right one.

4.1.2.2 Registry Stored Query

This transaction is used by a Prescription Placer, Pharmaceutical Adviser or Medication Dispenser actor to a registry actor (Prescription/Pharmaceutical Advice/Dispensed medication registry) in order to query for Prescription, Pharmaceutical Advice or Dispense documents based on the querying actor’s query parameters.

See the XDS Integration Profile of the ITI Technical Framework for a detailed description of this transaction (ITI-TF2a:3.18)

4.1.2.3 Provide and Register Document Set-b

This transaction is sent by a Prescription Placer, Pharmaceutical Adviser or Medication Dispenser actor to a repository actor (Prescription/Pharmaceutical Advice/Dispensed Medication Repository) in order to submitting one or more Prescription, Pharmaceutical Advice or Dispense documents. See the XDS Integration Profile of the ITI Technical Framework for a detailed description of this transaction (ITI-TF2b:3.41)
4.1.2.4 Retrieve Document Set

This transaction is sent by a Prescription Placer, Pharmaceutical Adviser or Medication Dispenser actor to a repository actor (Prescription/Pharmaceutical Advice/Dispensed Medication Repository) or the Community Pharmacy Manager actor in order to retrieve one or more Prescription, Pharmaceutical Advice or Dispense documents.

See the XDS Integration Profile of the ITI Technical Framework for a detailed description of this transaction (ITI-TF2b:3.43)

4.2 CMPD Integration Profile Options

Options that may be selected for this Integration Profile are listed in the table 4.2-1 along with the Actors to which they apply. Dependencies between options when applicable are specified in notes.

Table 4.2-1: Community Medication Prescription and Dispense - Actors and Options

<table>
<thead>
<tr>
<th>Actor</th>
<th>Options</th>
<th>Vol. & Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Pharmacy Manager</td>
<td>No options defined</td>
<td>- -</td>
</tr>
<tr>
<td>Prescription Placer</td>
<td>Workflow Management</td>
<td>see Vol. 2: 4</td>
</tr>
<tr>
<td>Pharmaceutical Adviser</td>
<td>Workflow Management</td>
<td>see Vol. 2: 4</td>
</tr>
<tr>
<td>Medication Dispenser</td>
<td>Workflow Management</td>
<td>see Vol. 2: 4</td>
</tr>
<tr>
<td>Repository actor</td>
<td>No options defined</td>
<td>- -</td>
</tr>
<tr>
<td>Prescription</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Advice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispense</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.1 Workflow Management Option

An actor implementing this option offers the ability to manage workflow according to the Workflow Definitions described in Volume 2, chapter 4.

4.3 CMPD Actor Groupings and Profile Interactions

<table>
<thead>
<tr>
<th>Actor</th>
<th>Groups with</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescription Placer</td>
<td>Content Creator: PRE</td>
<td>The Prescription Placer actor shall create Prescription documents according to the PRE content profile.</td>
</tr>
<tr>
<td></td>
<td>Content Consumer: PRE, PADV, DIS</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Adviser</td>
<td>Content Creator: PADV</td>
<td>The Pharmaceutical Adviser actor shall create Pharmaceutical Advice documents according to the PADV content profile.</td>
</tr>
<tr>
<td></td>
<td>Content Consumer: PRE, PADV, DIS</td>
<td></td>
</tr>
<tr>
<td>Medication Dispenser</td>
<td>Content Creator: DIS</td>
<td>The Medication Dispenser actor shall create Medication Dispense documents according to the DIS content profile.</td>
</tr>
<tr>
<td></td>
<td>Content Consumer: PRE, PADV, DIS</td>
<td></td>
</tr>
</tbody>
</table>

Note: All three actors shall also be able to consume Prescription-, Pharmaceutical Advice- and Medication Dispense-documents in order to determine the status of Prescription Items.
4.4 CMPD Process Flow

Current implementations of the community pharmacy process (prescribe & dispense medication) may be categorized in two different alternatives.

The first alternative is the so-called publish & pull. In this model, generally speaking, information is generated by a placer type actor (Prescriber, Pharmaceutical Adviser or Dispenser) and stored by means of a repository type actor. Other actors retrieve data by pulling it from repositories. This approach may apply to health systems where information is accessed on a centralized basis and, therefore, is made available to a collective of potential users (such as prescriptions available for dispense in any community pharmacy).

The alternative approach is the direct push model where information is sent directly to the actor intended to use it (e.g., prescriptions sent directly to the pharmacy named by the patient) and therefore no information is stored on a centralized basis. This model focuses on direct communication instead of availability to (more) potential users.

The current revision of the Integration Profile covers use cases relying on the publish & pull model only.

Workflow scenarios

The CMPD Process Flow can be principally differentiated in two basic workflow scenarios, one including a validation step by a Pharmaceutical Adviser actor and another excluding it:

- **Scenario 1: Including a validation step by a Pharmaceutical Adviser**
- **Scenario 2: Not including a validation step by a Pharmaceutical Adviser**

A domain using CMPD has to define in which workflow scenario it operates. Workflow scenarios cannot be used compounded.

Any software implementations of the CMPD profile have to be able to operate in both workflow scenarios.

4.4.1 Use Case community pharmacy-active substance, publish & pull (Scenario 1: “Including validation step”)

The purpose of this use case is to illustrate the prescription-dispense process in community pharmacy when the prescriber orders an active-substance (generic) medicine in the publish & pull model.

The process of this use case includes the validation step performed by a Pharmaceutical Adviser actor.

The following diagram shows the workflow of this use case and illustrates the overall context of

- … (workflow) tasks
 - Ordering, Validation, Dispensing
... which actor performs the task

- Prescription Placer, Pharmaceutical Adviser, Medication Dispenser

... the conditions leading to the next task

- In some cases depending on the outcome of the pharmaceutical validation documented in a Pharmaceutical Advice document (see PADV profile)

... on which task-transition each query of transaction PHARM-1 is used and which business rule it has to follow

- FindPrescriptionsForValidation (by the Pharmaceutical Adviser)
- FindPrescriptionsForDispense (by the Medication Dispenser)

This workflow is implicitly specified by the narrative descriptions in both this profile as well as in the Pharmacy Pharmaceutical Advice profile.

Note that software implementations shall be able to perform it in any case, whether or not actors are grouped with option “Workflow Management” (grouping with that option does not change the actual workflow, it just allows “technical” workflow management).
Please refer to:

- Community Prescription and Dispense (CMPD) profile
 - Volume 2, chapter 3.1.4.1.2.1.1.1 FindPrescriptionsForValidation
 - Volume 2, chapter 3.1.4.1.2.1.1.2 FindPrescriptionsForDispense
 - In case of grouping with XDW: Volume 2, chapter 4 Workflow Definitions
- Pharmacy Pharmaceutical Advice (PADV) profile
 - Vol. 2, chapter 6.3.4.3.3.6 Status Code
 - Vol. 2, chapter 6.3.4.3.3.4 Observation Code

4.4.1.1 Story Board

John Doe attends a consultation to his general practitioner, GP, because he is experiencing some breathing difficulty. The practitioner examines John and prescribes the active substance “Fenoterol” in his “Prescription Placer” software. The prescription is electronically sent to the “Prescription Repository”.

Since prescriptions are available to a wide range of pharmacies, John picks the pharmacy closest to his office. The pharmacist asks for John’s health card in order to retrieve the patient’s active prescriptions (from the Community Pharmacy Manager). Since John also suffers from arthritis he has been prescribed Ibuprofen. The pharmacists checks for interactions and finds nothing outstanding. The information on the pharmaceutical advice is electronically sent to the “Pharmaceutical Advice Repository”.

He consults his inventory and picks Berotec® which is in the range of prices approved by the health system. He gives out this medicine to the patient and records the transaction in the “Medication Dispenser”. The information on the medication dispensed is electronically sent to the “Dispensed Medication Repository”.

Note

The use case does not yet include the process step of getting the “current medication”, which is needed for checking interactions (ICAs) to the prescribed item. This is an open issue and will be covered in future versions of the profile.

4.4.1.2 Sequence Diagram

The following diagram represents the sequence of data exchanged between “system actors” involved in this use case.
This diagram illustrates the complete workflow of the prescription of a medication, the successful validation of the Prescription Item and the dispense of the medication.

4.4.2 Use Case community pharmacy-active substance, publish & pull (Scenario 2: “Not including validation step”)

The purpose of this use case is to illustrate the prescription-dispense process in community pharmacy when the prescriber orders an active-substance (generic) medicine in the publish & pull model.
The process of this use case does not include the validation step performed by a Pharmaceutical Adviser actor.

The following diagram shows the workflow of this use case and illustrates the overall context of

- … (workflow) tasks
- Ordering, Dispensing
- … which actor performs the task
- Prescription Placer, Medication Dispenser
- … the conditions leading to the next task
- … on which task-transition each query of transaction PHARM-1 is used and which business rule it has to follow
- FindPrescriptionsForDispense (by the Medication Dispenser)

![Figure 4.4.2-1: Scenario 2: Overall context of the workflow](image)

This workflow is implicitly specified by the narrative descriptions in this profile.
Note that software implementations shall be able to perform it in any case, whether or not actors are grouped with option “Workflow Management” (grouping with that option does not change the actual workflow, it just allows “technical” workflow management).

Please refer to:
- Community Prescription and Dispense (CMPD) profile
- Volume 2, chapter 3.1.4.1.2.1.1.2 FindPrescriptionsForDispense
- In case of grouping with XDW: Volume 2, chapter 4 Workflow Definitions

4.4.2.1 Story Board

John Doe attends a consultation to his general practitioner, GP, because he is experiencing some breathing difficulty. The practitioner examines John and prescribes the active substance “Fenoterol” in his “Prescription Placer” software. The prescription is electronically sent to the “Prescription Repository”.

Since prescriptions are available to a wide range of pharmacies, John picks the pharmacy closest to his office. The pharmacist asks for John’s health card in order to retrieve the patient’s active prescriptions (from the Community Pharmacy Manager).

He consults his inventory and picks Berotec® which is in the range of prices approved by the health system. He gives out this medicine to the patient and records the transaction in the “Medication Dispenser”. The information on the medication dispensed is electronically sent to the “Dispensed Medication Repository”.

Note

The use case does not yet include the process step of getting the “current medication”, which is needed for checking interactions (ICAs) to the prescribed item. This is an open issue and will be covered in future versions of the profile.

4.4.2.2 Sequence Diagram

The following diagram represents the sequence of data exchanged between “system actors” involved in this use case.
Physician prescribes Fenoterol

Patient requests medication dispense

Determine Prescription Items to dispense

Get Prescriptions for dispense

Query Prescriptions [PHARM-1]

Retrieve Document Set [ITI-43]

Query and retrieve: Prescriptions, Pharm.Advices and Dispenses of patient

Dispense to Fenoterol submitted

Provide and Register Document set [ITI-41]

Fenoterol prescribed to John Doe

Provide and Register Document set [ITI-41]

Figure 4.4.2.2-1: Use Case community pharmacy-active substance, publish & pull - Process Flow (Scenario 2: “Not including validation step”)

This diagram illustrates the complete workflow of the prescription and the dispense of the medication.

4.5 CMPD Security Considerations

Relevant XDS Affinity Domain Security background is discussed in the XDS Security Considerations Section (see ITI TF-1: 10.7).
4.6 CMPD Implementation Scenarios

The following chapter describes several implementation scenarios for the Community Prescription and Dispense Integration Profile.

The prescription and dispense process of real-world projects involves several parties acting in the different abstract roles (Prescription Placer, Pharmaceutical Adviser, Medication Dispenser). The Prescription Placer role is usually taken by physicians; the Pharmaceutical Adviser and Medication Dispenser role is usually taken by pharmacists, which both are usually organized in different organizations.

This results in a wide variety of implementation requirements together with the need of not only organizational but also technical separation of systems. Physicians may want to store prescriptions in another repository than pharmacists the dispenses. In a strict separation even the use of separate IHE affinity domains is required to arrange a throughout distinct scenario. CMPD was designed to be used in either single-domain or multi-domain scenarios to fit to these requirement.

Any political intended separation has to be technically bridged at one point otherwise a common prescription and dispense process cannot be established. To minimize the possible points of contact between the domains the Community Pharmacy Manager was introduced.

Explanation to the diagrams used in the following implementation scenario chapters:

- Dotted lines mean separation of concerns
- Different background colors mean different XDS affinity domains

4.6.1 Usage of CMPD in a “single-domain” scenario

The descriptions of CMPD in the previous chapters are aligned to the usage of the profile in a scenario where all actors are hosted in a single XDS Affinity domain.

Operating within a single XDS Affinity domain is the most simple implementation scenario and has several benefits, like e.g., that just one registry holds any document metadata, which eases query, retrieving and publishing of documents, etc.

On the other hand a simple scenario like this may not be applicable to scenarios in reality, where organizational, strategical or political reasons require more separation between the participating parties (physicians, pharmacists).

The following diagram shows a simple example of a single-domain implementation scenario to demonstrate the capabilities of CMPD.
Description of the example scenario

The group of Prescription Placers, Pharmaceutical Advisers and Medication Dispensers are altogether located in one XDS affinity domain. Each group stores its documents in its own dedicated repository, but all use the same document registry of the affinity domain.⁶

⁶ In an even more simplified scenario the different document repositories could be merged into one single document repository, but this would not change the principles of the example.
4.6.1.1 Demonstration of use case 1 in example scenario (simple)

Step 1: Prescription Placer creates a prescription

The Prescription document is submitted to the appropriate Prescription Repository.

Step 2: Pharmaceutical Adviser queries the prescription
The Pharmaceutical Adviser queries the prescription by using transaction PHARM-1, query “FindPrescriptionsForValidation”.

The CPM queries the common XDS domain registry for prescription, pharmaceutical advice and dispense documents. Then it retrieves all these documents from the appropriate document repositories.

After retrieving it does linking of the documents by their document IDs and determines the status of each prescription. It applies appropriate filtering according to the semantic question “for Validation” and returns just “relevant” document UUIDs to the Pharmaceutical Adviser actor, which proceeds with step 3.

Future versions of this profile will define additional transactions, like “Query current medication”\(^7\), which might be important for the pharmacist to do validation. Such additional queries and their related business logic will be also provided by the CPM.

\(^7\) Exact definition of this query has not yet been discussed (e.g., query all dispense repositories for dispensed medication to a patient and filter this data by validity and range calculations to determine the current medication-status of the patient.
Step 3: Pharmaceutical Adviser retrieves the documents of the query result

The Pharmaceutical Adviser actor asks the CPM to retrieve all documents identified by the returned document UUIDs from the according document repositories.

The Pharmaceutical Adviser actor (as a machine) parses and relinks the returned documents by their document IDs. Then the system or the human operator performs validation and proceeds with step 4.
Step 4: Pharmaceutical Adviser submits a pharmaceutical advice

After the validation step the outcome of the validation is documented in a Pharmaceutical Advice document. This document is submitted to the appropriate Pharmaceutical Advice Repository.
Step 5: Medication Dispenser queries the prescription

The Medication Dispenser queries the prescription by using transaction PHARM-1, query “FindPrescriptionsForDispense”.

Analog to step 2, the CPM queries the XDS domain registry for prescription, pharmaceutical advice and dispense documents. Then it retrieves all these documents from the appropriate document repositories.

After retrieving it performs linking of the documents by their document IDs and determines the status. It applies appropriate filtering according to the semantic question “for Dispense”, and returns just “relevant” document UUIDs to the Medication Dispenser actor, which proceeds with step 6.
Step 6: Medication Dispenser retrieves the documents of the query result

The Medication Dispenser actor asks the CPM to retrieve all documents identified by the returned document UUIDs from the according document repositories.

The Medication Dispenser actor (as a machine) parses and relinks the returned documents by their document IDs. Then the human operator performs the dispense and proceeds with step 7.
Step 7: Medication Dispenser submits a dispense

After the dispense has taken place it is documented in a Dispense document. This document is submitted to the appropriate Dispensed Medication Repository.
4.6.2 Usage of CMPD in a “multi-domain” scenario

The descriptions of CMPD in the previous chapters are aligned to the usage of the profile in a scenario where all actors are hosted in a single XDS Affinity domain. Nevertheless, the profile can also be used in multi XDS Affinity domain scenarios.

Operating within a scenario consisting of multiple XDS Affinity domains is a complex but rather realistic implementation scenario. Its main benefit is that a minimum of technical contact is required between the participating parties of such a system (physicians, pharmacists) for achieving technical interoperability. Such utmost separation might be an organizational, strategical or political requirement.

Such an implementation scenario requires the usage of the CPM’s “relaying” functionality shown in the following more detailed Actor Diagram:

![More detailed Actor Diagram in a multi-domain scenario](image-url)

The following diagram shows an example of a possible multi-domain implementation scenario to demonstrate the capabilities of CMPD.
Description of the example scenario

The group of Prescription Placers divides into 2 separate domains, the first (PRE1) showing a federated architecture with multiple repositories, the second (PRE2) with all clients connected to one.

The group of Pharmaceutical Advisers is organized in an own affinity domain (PADV), all storing in one repository.

The group of Medication Dispensers are all organized in a common affinity domain (DIS), but everyone stores its dispenses in their own application (also acting as repository).

All these different domains accept the XDS Affinity domain of the Community Pharmacy Manager (CPM) as the point of intersection to which they all maintain trusted relationships to. Bi-lateral trusts are not required.
4.6.2.1 Demonstration of use case 1 in example scenario (complex)

Step 1: Prescription Placer creates a prescription

The Prescription document is submitted to the appropriate Prescription Repository.
Step 2: Pharmaceutical Adviser queries the prescription

The Pharmaceutical Adviser queries the prescription by using transaction PHARM-1, query “FindPrescriptionsForValidation”.

In this complex scenario the CPM has to use XCA mechanisms to query all other domains for prescription, pharmaceutical advice and dispense documents. Then it retrieves all these documents from the appropriate document repositories.

After retrieving it does linking of the documents by their document IDs and determines the status of each prescription. It applies appropriate filtering according to the semantic question “for Validation” and returns just “relevant” document UUIDs to the Pharmaceutical Adviser actor, which proceeds with step 3.

Future versions of this profile will define additional transactions, like “Query current medication”\(^8\), which might be important for the pharmacist to do validation. Such additional queries and their related business logic will be also provided by the CPM.

\(^8\) Exact definition of this query has not yet been discussed (e.g., query all dispense repositories for dispensed medication to a patient and filter this data by validity and range calculations to determine the current medication-status of the patient.
Step 3: Pharmaceutical Adviser retrieves the documents of the query result

The Pharmaceutical Adviser actor asks the CPM to retrieve all documents identified by the returned document UUIDs.

The CPM acts as a relaying entity and accesses all requested repositories for retrieving the documents by XCA. Then it returns them to the calling client. Note that the Pharmaceutical Adviser actor has no need to have access to the other domains (which could be organizational prohibited).

The Pharmaceutical Adviser actor (as a machine) parses and relinks the returned documents by their document IDs. Then the system or the human operator performs validation and proceeds with step 4.
Step 4: Pharmaceutical Adviser submits a pharmaceutical advice

After the validation step the outcome of the validation is documented in a Pharmaceutical Advice document. This document is submitted to the appropriate Pharmaceutical Advice Repository.
Step 5: Medication Dispenser queries the prescription

The Medication Dispenser queries the prescription by using transaction PHARM-1, query “FindPrescriptionsForDispense”.

Analog to step 2, the CPM uses XCA mechanisms to query all other domains for prescription, pharmaceutical advice and dispense documents. Then it retrieves all these documents from the appropriate document repositories.

After retrieving it performs linking of the documents by their document IDs and determines the status. It applies appropriate filtering according to the semantic question “for Dispense”, and returns just “relevant” document UUIDs to the Medication Dispenser actor, which proceeds with step 6.
Step 6: Medication Dispenser retrieves the documents of the query result

The Medication Dispenser actor asks the CPM to retrieve all documents identified by the returned document UUIDs.

The CPM acts as a relaying entity and accesses all requested repositories for retrieving the documents by XCA. Then it returns them to the calling client. Note that the Medication Dispenser actor has no need to have access to the other domains (which could be organizational prohibited).

The Medication Dispenser actor (as a machine) parses and relinks the returned documents by their document IDs. Then the human operator performs the dispense and proceeds with step 7.
Step 7: Medication Dispenser submits a dispense

After the dispense has taken place it is documented in a Dispense document. This document is submitted to the appropriate Dispensed Medication Repository.
Appendix A Actor Summary Definitions

Community Pharmacy Manager - Actor providing the business logic for status management and other purposes. As a second role it acts as a “relaying role” where certain standard XDS communication is routed through for providing the possibility of applying project-specific business logic on it.

Prescription Placer - Actor for placing prescriptions (initial or modified in case of a substitution of invalidation, for example). It provides Prescription documents containing one or more Prescription Items representing the prescribed medication.

Pharmaceutical Adviser - Actor responsible for the validation of prescriptions from a pharmacist’s perspective. It sends provides the Pharmaceutical Advice document as the result of the validation. Pharmaceutical Advisers (e.g., automated ICA check modules) may also provide “draft” advices which don’t affect the status of a prescription but serve as a foundation for the advice performed by another Pharmaceutical Adviser.

Medication Dispenser - Actor responsible for the process of dispensing medication to the patient, fulfilling the prescription. It receives prescriptions already validated and provides a dispense document as result of the act of delivering the medication to the patient.

Registry/Repository actors - Formally the Community Pharmacy process defines three different “repositories” for Prescriptions, Pharmaceutical Advices and Dispenses. They shall be seen as abstract repository-roles for persisting the appropriate document types the documents. This profile makes use of the XDS Profile for defining abstract XDS registry and repository actors for modeling the abstract repository-roles for real implementations.

Appendix B Transaction Summary Definitions

Query Pharmacy Documents - This transaction defines how a querying actor has to query the Community Pharmacy Manager for prescriptions (PRE) and their related documents. Related documents are Pharmaceutical Advice (PADV) and Dispense (DIS) documents. It defines specialized queries allow the finding of prescriptions and their related documents for specific purposes (e.g., “for validation” or “for dispense”).

Registry Stored Query - See the XDS Integration Profile of the ITI Technical Framework for a detailed description of this transaction (ITI-TF2a:3.18)

Provide and Register Document Set-b - See the XDS Integration Profile of the ITI Technical Framework for a detailed description of this transaction (ITI-TF2a:3.41)

Retrieve Document Set - See the XDS Integration Profile of the ITI Technical Framework for a detailed description of this transaction (ITI-TF2a:3.43)
Volume 2 – Transactions

3.0 IHE Transactions

Add section 3.1

3.1 Query Pharmacy Documents [PHARM-1]

This transaction defines how a querying actor has to query the Community Pharmacy Manager for prescriptions (PRE) and their related documents. Related documents are Pharmaceutical Advice (PADV) and Dispense (DIS) documents.

Specialized queries allow the finding of prescriptions and their related documents for specific purposes (e.g., for validation).

Querying actors may be:

- Pharmaceutical Adviser
- Medication Dispenser

This transaction is very similar to the concept of the Registry Stored Query (ITI-18) transaction in the XDS Integration Profile of the ITI Technical Framework, except that the query itself targets not a single registry (like described in the XDS Integration Profile) but shall be able to sub-query one to many registry/repository systems (by using XCA in case of multi-domain scenarios) to get the requested query result.

The querying actor faces the same interface as if querying a XDS Document registry actor, although the query result may contain references to documents of many different domains.

3.1.1 Scope

The Query Pharmacy Documents transaction supports two specialized queries:

- **FindPrescriptionsForValidation**
 - Find prescriptions and their related documents containing Prescription Items ready to be validated

- **FindPrescriptionsForDispense**
 - Find prescriptions and their related documents containing Prescription Items ready to be dispensed

All queries return:

- Metadata for one or more registry objects, or
- Object references for one or more registry objects (registry UUIDs).
3.1.2 Use Case Roles

Actors: Querying actor

Role: Requests a query by identifier (UUID), and passes parameters to the query. A parameter controlling the format of the returned data is passed; it selects either object references or full objects.

Actor: Community Pharmacy Manager

Role: Services the query using its stored definitions of the queries defined for CMPD.

3.1.3 Referenced Standard

ITI-18: Registry Stored Query and all its related standards.

3.1.4 Interaction Diagram

3.1.4.1 Query Pharmacy Documents

This is a query request to the Community Pharmacy Manager from a Querying actor. The query request contains:
- A reference to a pre-defined query stored on the Document Registry actor.

Parameters to the query. The query parameters are matched up with the query variables defined in the query definition on the Document Registry actor.

3.1.4.1.1 Trigger Events

This message is initiated when the Querying actor wants to query/retrieve document metadata. This may be the case, if:

1. A Pharmaceutical Adviser actor wants to find active prescriptions (and their related pharmaceutical advices and dispenses) ready to validate.
2. A Medication Dispenser wants to find active prescriptions (and their related pharmaceutical advices and dispenses) which are already validated and ready for dispense.

3.1.4.1.2 Message Semantics

The message semantics of this message are based on the definitions of the [ITI-18] transaction, but incorporate some important changes defined in the chapters below.

References to: ITI TF-2a: [ITI-18]

3.1.4.1.2.1 Required Queries

The Registry Stored Query (ITI-18) transaction defines several kinds of Stored Queries (FindDocuments, FindSubmissionSets, etc.).

The PHARM-1 transaction is alike to this concept but provides a different set of Stored Queries.

The provided Stored Queries are:

- **FindPrescriptionsForValidation**

 - Find prescriptions and their related documents containing Prescription Items ready to be validated

- **FindPrescriptionsForDispense**

 - Find prescriptions and their related documents containing Prescription Items ready to be dispensed

3.1.4.1.2.1.1 Parameters for Required Queries

This chapter defines the parameters for the Required Queries.
3.1.4.1.2.1.1.1 FindPrescriptionsForValidation

Find prescriptions and their related documents (XDSDocumentEntry objects) containing Prescription Items ready to be validated for a given patientID and other matching attributes. The other parameters can be used to restrict the set of XDSDocumentEntry objects returned.

Returns: XDSDocumentEntry objects according to the following business rules.

The business rules are basically depending on the workflow scenario used (see Vol. 1, chapter 4.4 CMPD Process Flow).

This query is used in scenario 1 “Including validation step” only, so just one set of business rules is defined.

Scenario 1 “Including validation step”:

Business rule 1.1: Returns Prescription documents matching the query parameters:

- XDSDocumentEntry matches all required query parameters (PatientID, Status)
- XDSDocumentEntry matches all other optional query parameters
- FormatCode matches urn:ihe:pharm:pre:2010
- Prescription document contains at least one Prescription Item ready to validate
 - A Prescription Item is ready to validate if there exists no Pharmaceutical Advice Item related to it which has statusCode set to “completed”\(^9\) and the result code equals OK or CHANGE\(^10\).

Business rule 1.2: Returns related Pharmaceutical Advice documents to the Prescriptions found

- XDSDocumentEntry matches all required query parameters (PatientID, Status)
- FormatCode matches urn:ihe:pharm:padv:2010
- Pharmaceutical Advice document contains a Pharmaceutical Advice Entry Item related to a Prescription Item of the found Prescription documents.\(^11\)

\(^9\) See the Pharmacy Pharmaceutical Advice Content Profile (PADV) for details about the statusCode element (chapter “Status Code”)

\(^10\) See the Pharmacy Pharmaceutical Advice Content Profile (PADV) for details about the code element (chapter “Observation Code”)

\(^11\)
Business rule 1.3: Returns related Dispense documents to the Prescriptions found

- XDSDocumentEntry matches all required query parameters (PatientID, Status)
- Dispense document contains a Dispense Entry Item related to a Prescription Item of the found Prescription documents.\(^{12}\)

Explanation

Returning Prescription documents according to business rule 1.1 is the primary result of the query, where all optional query parameters which might affect the result of the query are applied.

The secondary result of the query, the related Pharmaceutical Advice and Dispense documents to the Prescriptions (Business rule 1.2 and 1.3), is dependent on the primary result (found Prescriptions) only and contains just directly related documents.

Scenario 2 “Not including validation step”:

Business rule 2.1: Returns Prescription documents matching the query parameters:

- XDSDocumentEntry matches all required query parameters (PatientID, Status)
- XDSDocumentEntry matches all other optional query parameters
- FormatCode matches `urn:ihe:pharm:pre:2010`
- Prescription document contains at least one Prescription Item ready to be dispensed
 - A Prescription Item is ready to dispense if there exists no Dispense Item to it.

Business rule 2.2: Returns related Dispense documents to the Prescriptions found

- XDSDocumentEntry matches all required query parameters (PatientID, Status)
- Dispense document contains a Dispense Entry Item related to a Prescription Item of the found Prescription documents.\(^{13}\)

\(^{11}\) See the Pharmacy Pharmaceutical Advice Content Profile (PADV) for details how the relation between Pharmaceutical Advice Entries and Prescription Items is defined, chapter: “Pharmaceutical Advice Item Entry Content Module” (1.3.6.1.4.1.19376.1.9.1.3.3)

\(^{12}\) See the Pharmacy Dispense Content Profile (DIS) for details how the relation between Dispense Entries and Prescription Items is defined, chapter: “Dispense Item Entry Content Module” (1.3.6.1.4.1.19376.1.9.1.3.4)
Explanation

Returning Prescription documents according to business rule 2.1 is the primary result of the query, where all optional query parameters which might affect the result of the query are applied. The secondary result of the query, the related Dispense documents to the Prescriptions (Business rule 2.2), is dependent on the primary result (found Prescriptions) only and contains just directly related documents.

Query parameters:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Attribute</th>
<th>Opt</th>
<th>Mult</th>
</tr>
</thead>
<tbody>
<tr>
<td>$XDSDocumentEntryPatientId</td>
<td>XDSDocumentEntry.patientId</td>
<td>R</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryEntryUUID</td>
<td>XDSDocumentEntry.entryUUID</td>
<td>O(^1)</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryUniqueId</td>
<td>XDSDocumentEntry.uniqueId</td>
<td>O(^1)</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryPracticeSettingCode(^3)</td>
<td>XDSDocumentEntry.practiceSettingCode</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryCreationTimeFrom</td>
<td>Lower value of XDSDocumentEntry.creationTime</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryCreationTimeTo</td>
<td>Upper value of XDSDocumentEntry.creationTime</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryServiceStartTimeFrom</td>
<td>Lower value of XDSDocumentEntry.serviceStartTime</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryServiceStartTimeTo</td>
<td>Upper value of XDSDocumentEntry.serviceStartTime</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryServiceStopTimeFrom</td>
<td>Lower value of XDSDocumentEntry.serviceStopTime</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryServiceStopTimeTo</td>
<td>Upper value of XDSDocumentEntry.serviceStopTime</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryHealthcareFacilityTypeCode(^3)</td>
<td>XDSDocumentEntry.healthcareFacilityTypeCode</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryEventCodeList(^3)</td>
<td>XDSDocumentEntry.eventCodeList(^3)</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryConfidentialityCode(^3)</td>
<td>XDSDocumentEntry.confidentialityCode(^3)</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryAuthorPerson(^3)</td>
<td>XDSDocumentEntry.Author</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryStatus</td>
<td>XDSDocumentEntry.Status</td>
<td>R</td>
<td>M</td>
</tr>
</tbody>
</table>

\(^{13}\) See the Pharmacy Dispense Content Profile (DIS) for details how the relation between Dispense Entries and Prescription Items is defined, chapter: “Dispense Item Entry Content Module” (1.3.6.1.4.1.19376.1.9.1.3.4)
Either $XDSDocumentEntryEntryUUID or $XDSDocumentEntryUniqueId shall be specified. This transaction shall return an error if both parameters are specified.

Shall be coded according to specification in ITI TF-2a: 3.18.4.1.2.3.4 Coding of Code/Code-Scheme.

The value for this parameter is a pattern compatible with the SQL keyword LIKE which allows the use of the following wildcard characters: % to match any (or no) characters and _ to match a single character. The match shall be applied to the text contained in the Value elements of the authorPerson Slot on the author Classification (value strings of the authorPerson sub-attribute)

Examples for the “FindPrescriptionsForValidation” query
Assume the following situation of persisted documents in the Prescription-/Pharmaceutical Advice- and Dispense repositories:

<table>
<thead>
<tr>
<th>Prescriptions</th>
<th>Pharmaceutical Advice</th>
<th>Dispenses</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE 1</td>
<td>PRE Item 1-1</td>
<td>PADV 1</td>
<td>DIS 1</td>
</tr>
<tr>
<td></td>
<td>PRE Item 1-2</td>
<td>PADV 2</td>
<td></td>
</tr>
<tr>
<td>PRE 2</td>
<td>PRE Item 2-1</td>
<td>PADV 3</td>
<td>DIS 2</td>
</tr>
<tr>
<td></td>
<td>PRE Item 2-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRE Item 2-3</td>
<td>PADV 4</td>
<td></td>
</tr>
<tr>
<td>PRE 3</td>
<td>PRE Item 3-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 1: Standard query
Used Query Parameters:
- Patient ID
- Document Status

This is what should be returned by the query:

<table>
<thead>
<tr>
<th>Returned XDSDocumentEntries</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE 2, PADV 3, PADV 4, DIS 2</td>
<td>PRE Item 2-2 of PRE 2 is not validated yet and therefore</td>
</tr>
</tbody>
</table>
Example 2: Search for a specific prescription

Query Parameters set:

- Patient ID
- Document Status
- Document uniqueId of the specific prescription (e.g., because patient showed a paper prescription with the uniqueId printed on it)

In case the uniqueId of PRE 2 is given as query parameter, this is what should be returned by the query:

<table>
<thead>
<tr>
<th>Returned XDSDocumentEntries</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE 2</td>
<td>PRE 2 shall be returned as result. PADV 3, PADV 4 and DIS 2 are all documents which are related to (some PRE Items on) PRE 2 and shall also be returned as result.</td>
</tr>
<tr>
<td>PRE 3</td>
<td>PRE Item 3-1 of PRE 3 is not validated yet and therefore PRE 3 shall be returned as result. No other related documents are available.</td>
</tr>
</tbody>
</table>

Note: In case the uniqueId of PRE 1 is given as query parameter, it would result in an empty result set, because PRE 1 would be the only possible return but contains no Prescription Item which is ready to be validated.

3.1.4.1.2.1.1.2 FindPrescriptionsForDispense

Find prescriptions and their related documents (XDSDocumentEntry objects) containing Prescription Items already validated and ready to be dispensed for a given patientID and other matching attributes. The other parameters can be used to restrict the set of XDSDocumentEntry objects returned.

Returns: XDSDocumentEntry objects according to the following business rules:

Business rule 1: Returns Prescription documents matching the query parameters:
Business rule 1: Returns related Prescription documents to the Prescriptions found

- XDSDocumentEntry matches all required query parameters (PatientID, Status)
- XDSDocumentEntry matches all other optional query parameters
- FormatCode matches urn:ihe:pharm:pre:2010
- Prescription document contains at least one Prescription Item ready to dispense
 - A Prescription Item is ready to dispense if there exists a Pharmaceutical Advice Item related to it which has statusCode set to “completed”. \(^{14}\)

Business rule 2: Returns related Pharmaceutical Advice documents to the Prescriptions found

- XDSDocumentEntry matches all required query parameters (PatientID, Status)
- FormatCode matches urn:ihe:pharm:padv:2010
- Pharmaceutical Advice document contains a Pharmaceutical Advice Entry Item related to a Prescription Item of the found Prescription documents. \(^{15}\)

Business rule 3: Returns related Dispense documents to the Prescriptions found

- XDSDocumentEntry matches all required query parameters (PatientID, Status)
- Dispense document contains a Dispense Entry Item related to a Prescription Item of the found Prescription documents. \(^{16}\)

Explanation

Returning Prescription documents according to business rule 1 is the primary result of the query, where all optional query parameters which might affect the result of the query are applied. The secondary result of the query, the related Pharmaceutical Advice and Dispense documents to the Prescriptions (Business rule 2 and 3), is dependent on the primary result (found Prescriptions) only and contains just directly related documents.

\(^{14}\) See the Pharmacy Pharmaceutical Advice Content Profile (PADV) for details about the statusCode element

\(^{15}\) See the Pharmacy Pharmaceutical Advice Content Profile (PADV) for details how the relation between Pharmaceutical Advice Entries and Prescription Items is defined, chapter: “Pharmaceutical Advice Item Entry Content Module” (1.3.6.1.4.1.19376.1.9.1.3.3)

\(^{16}\) See the Pharmacy Dispense Content Profile (DIS) for details how the relation between Dispense Entries and Prescription Items is defined, chapter: “Dispense Item Entry Content Module” (1.3.6.1.4.1.19376.1.9.1.3.4)
Query parameters:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Attribute</th>
<th>Opt</th>
<th>Mult</th>
</tr>
</thead>
<tbody>
<tr>
<td>$XDSDocumentEntryPatientId</td>
<td>XDSDocumentEntry. patientId</td>
<td>R</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryEntryUUID</td>
<td>XDSDocumentEntry. entryUUID</td>
<td>O³</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryUniqueId</td>
<td>XDSDocumentEntry. uniqueId</td>
<td>O³</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryPracticeSettingCode³</td>
<td>XDSDocumentEntry. practiceSettingCode</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryCreationTimeFrom</td>
<td>Lower value of XDSDocumentEntry. creationTime</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryCreationTimeTo</td>
<td>Upper value of XDSDocumentEntry. creationTime</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryServiceStartTimeFrom</td>
<td>Lower value of XDSDocumentEntry. serviceStartFrom</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryServiceStartTimeTo</td>
<td>Upper value of XDSDocumentEntry. serviceStartFrom</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryServiceStopTimeFrom</td>
<td>Lower value of XDSDocumentEntry. serviceStopTimeFrom</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryServiceStopTimeTo</td>
<td>Upper value of XDSDocumentEntry. serviceStopTimeTo</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>$XDSDocumentEntryHealthcareFacilityTypeCode³</td>
<td>XDSDocumentEntry. healthcareFacilityTypeCode</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryEventCodeList³</td>
<td>XDSDocumentEntry. eventCodeList³</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryConfidentialityCode³</td>
<td>XDSDocumentEntry. confidentialityCode³</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryAuthorPerson⁴</td>
<td>XDSDocumentEntry. Author</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td>$XDSDocumentEntryStatus</td>
<td>XDSDocumentEntry. Status</td>
<td>R</td>
<td>M</td>
</tr>
</tbody>
</table>

¹Either $XDSDocumentEntryEntryUUID or $XDSDocumentEntryUniqueId shall be specified. This transaction shall return an error if both parameters are specified.

³Shall be coded according to specification in ITI TF-2a: 3.18.4.1.2.3.4 Coding of Code/Code-Scheme.

⁴The value for this parameter is a pattern compatible with the SQL keyword LIKE which allows the use of the following wildcard characters: % to match any (or no) characters and _ to match a single character. The match shall be applied to the text contained in the Value elements of the authorPerson Slot on the author Classification (value strings of the authorPerson sub-attribute).
Examples for the “FindPrescriptionsForDispense” query

Assume the following situation of persisted documents in the Prescription-/Pharmaceutical Advice- and Dispense repositories:

<table>
<thead>
<tr>
<th>Prescriptions</th>
<th>Pharmaceutical Advice</th>
<th>Dispenses</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE 1</td>
<td>PRE Item 1-1</td>
<td>PADV 1</td>
<td>DIS 1</td>
</tr>
<tr>
<td></td>
<td>PRE Item 1-2</td>
<td>PADV 2</td>
<td></td>
</tr>
<tr>
<td>PRE 2</td>
<td>PRE Item 2-1</td>
<td>PADV 3</td>
<td>DIS 2</td>
</tr>
<tr>
<td></td>
<td>PRE Item 2-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRE Item 2-3</td>
<td>PADV 4</td>
<td></td>
</tr>
<tr>
<td>PRE 3</td>
<td>PRE Item 3-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 1: Standard query

Used Query Parameters:
- Patient ID
- Document Status

This is what should be returned by the query:

<table>
<thead>
<tr>
<th>Returned XDSDocumentEntries</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE 1</td>
<td>PADV 1, PADV 2, DIS 1</td>
</tr>
<tr>
<td>PRE 2</td>
<td>PADV 3, PADV 4, DIS 2</td>
</tr>
</tbody>
</table>

Example 2: Search for a specific prescription
Query Parameters set:

- Patient ID
- Document Status
- Document uniqueId of the specific prescription (e.g., because patient showed a paper prescription with the uniqueld printed on it)

In case the uniqueId of PRE 1 is given as query parameter, this is what should be returned by the query:

<table>
<thead>
<tr>
<th>Returned XDSDocumentEntries</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE 1</td>
<td>PADV 1, PADV 2, DIS 1</td>
</tr>
</tbody>
</table>

Note: In case the uniqueld of PRE 3 is given as query parameter, it would result in an empty result set, because PRE 3 would be the only possible return but contains no Prescription Item which is ready to be dispensed.

3.1.4.1.2.2 Stored Query IDs

The Registry Stored Query (ITI-18) transaction defines several kinds of Stored Queries (FindDocuments, FindSubmissionSets, etc.). The PHARM-1 transaction has to provide a different set of Stored Queries. They are assigned the following Query IDs. These IDs are used in the AdhocQueryRequest to reference queries stored on the Community Pharmacy Manager actor. Query IDs are in UUID format (RFC4122). An error shall be returned when an unsupported stored query ID is received.

<table>
<thead>
<tr>
<th>Query Name</th>
<th>Query ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>FindPrescriptionsForValidation</td>
<td>urn:uuid:c1a43b20-0254-102e-8469-a6af440562e8</td>
</tr>
<tr>
<td>FindPrescriptionsForDispense</td>
<td>urn:uuid:c875eb9c-0254-102e-8469-a6af440562e8</td>
</tr>
</tbody>
</table>

3.1.4.1.2.3 Web Services Transport

The Registry Stored Query (ITI-18) transaction defines the transmission using Web Services. This chapter describes the differences of the PHARM-1 transaction to the ITI-18.
IHE-WSP201) The attribute /wsdl:definitions/@name shall be “CommunityPharmacyManager”.

The following WSDL naming conventions shall apply:

- wsdl:definitions/@name="CommunityPharmacyManager":
 - query message -> "QueryPharmacyDocuments_Message"
 - query response -> "QueryPharmacyDocuments_Response_Message"
 - portType -> "CommunityPharmacyManager_PortType"
 - operation -> "QueryPharmacyDocuments"
 - SOAP 1.2 binding -> "CommunityPharmacyManager_Binding_Soap12"
 - SOAP 1.2 port -> "CommunityPharmacyManager_Port_Soap12"

IHE-WSP202) The targetNamespace of the WSDL shall be “urn:ihe:iti:xds-b:2007”

These are the requirements for the Registry Stored Query transaction presented in the order in which they would appear in the WSDL definition:

- The following types shall be imported (xsd:import) in the /definitions/types section:
 schemaLocation="query.xsd"

- The /definitions/message/part/@element attribute of the Find Prescriptions Request message shall be defined as “query:AdhocQueryRequest”

- The /definitions/message/part/@element attribute of the Find Prescriptions Response message shall be defined as “query:AdhocQueryResponse”

- The /definitions/portType/operation/input/@wsaw:Action attribute for the Find Prescriptions Request message shall be defined as “urn:ihe:pharm:cmpd:2010:QueryPharmacyDocuments”

- The /definitions/portType/operation/output/@wsaw:Action attribute for the Find Prescriptions Response message shall be defined as “urn:ihe:pharm:cmpd:2010:QueryPharmacyDocumentsResponse”

- The /definitions/binding/operation/soap12:operation/@soapAction attribute should be defined as “urn:ihe:pharm:cmpd:2010:QueryPharmacyDocuments”

The following WSDL fragment shows an example of Find Prescription transaction definition:

```xml
<?xml version="1.0" encoding="utf-8"?>
<definitions ...>
  ...
  <types>
    <xsd:schema elementFormDefault="qualified" targetNamespace="urn:ihe:iti:xds-b:2007">
      <xsd:import
        namespace="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0"
        schemaLocation="schema\query.xsd"/>
      ...
    </xsd:schema>
  </types>
</definitions>
```
3.1.4.1.2.3.1 Sample SOAP Messages

The samples in the following two sections show a typical SOAP request and its relative SOAP response.

3.1.4.1.2.3.1.1 Sample Query Prescription SOAP Request

```xml
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:xmins="http://www.w3.org/2005/08/addressing">
  <s:Header>
    <a:MessageID>urn:uuid:df119ad-dc13-49c1-a3c7-e3742531f9b3</a:MessageID>
    <a:ReplyTo s:mustUnderstand="1">
      <a:Address>http://localhost/service/CommunityPharmacyManager.svc</a:Address>
    </a:ReplyTo>
    <a:To>http://localhost/service/CommunityPharmacyManager.svc</a:To>
  </s:Header>
  <s:Body>
    <query:AdhocQueryRequest>
      see Sample Query Request below
    </query:AdhocQueryRequest>
  </s:Body>
</s:Envelope>
```

3.1.4.1.2.3.1.2 Sample Query Prescription SOAP Response

```xml
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:xmins="http://www.w3.org/2005/08/addressing">
  <s:Header>
    <a:RelatedTo>urn:uuid:df119ad-dc13-49c1-a3c7-e3742531f9b3</a:RelatedTo>
  </s:Header>
  <s:Body>
    ...
  </s:Body>
</s:Envelope>
```
3.1.4.1.3 Expected Actions

The Community Pharmacy Manager actor shall do the same actions as described for the Document Registry actor in the Registry Stored Query (ITI-18) transaction.

3.1.4.1.3.1 Sample Query Request

This example query specifies:

- The FindPrescriptionsForValidation query (id attribute of AdhocQuery element)
- patientID st3498702^^^&1.3.6.1.4.1.21367.2005.3.7&ISO
- Return Approved documents only
- Time range (creation time) 200412252300 to 200501010800

Note that ebRS 3.0 specifies the use of Slot to specify name/value(s) pairs as parameters to a Stored Query.

Note: query parameter names are highlighted for readability.
3.1.4.1.3.2 Sample Query Response

This sample query response corresponds to the above query. Note that the query response message is coded in version 3.0 ebRIM and ebRS. This sample response and the ebXML Registry version 3.0 schema files are available online. The Implementation Guide found at http://wiki.ihe.net/index.php?title=ITI_Implementation_Guide contains such supplemental material.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<AdhocQueryResponse
 xmlns="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0"
 xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0 file:/query.xsd"
 status="urn:oasis:names:tc:ebxml-regrep:ResponseStatusType:Success">
 <rim:RegistryObjectList>
  <rim:ExtrinsicObject
   xmlns:q="urn:oasis:names:tc:ebxml-regrep:xsd:query:3.0"
   xmlns:rim="urn:oasis:names:tc:ebxml-regrep:xsd:rim:3.0"
   id="urn:uuid:08a15a6f-5b4a-42de-8f95-89474f83abdf"
   isOpaque="false"
   mimeType="text/xml"
   objectType="urn:uuid:7edca82f-054d-47f2-a032-9b2a5b5186c1"
   status="urn:oasis:names:tc:ebxml-regrep:StatusType:Approved">
   <rim:Slot name="URI">
    <rim:ValueList>
     <rim:Value>http://localhost:8080/XDS/Repository/08a15a6f-5b4a-42de-8f95-89474f83abdf.xml</rim:Value>
    </rim:ValueList>
   </rim:Slot>
   <rim:Slot name="authorInstitution">
    <rim:ValueList>
     <rim:Value>Some Hospital^^^^^^^^^1.2.3.4.5.6.7.8.9.1789.45</rim:Value>
    </rim:ValueList>
   </rim:Slot>
   <rim:Slot name="creationTime">
    <rim:ValueList>
     <rim:Value>200412261119</rim:Value>
    </rim:ValueList>
   </rim:Slot>
   <rim:Slot name="hash">
    <rim:ValueList>
     <rim:Value>4cf4f82d78b5e2aac35c31bca8cb79fe6bd6a41e</rim:Value>
    </rim:ValueList>
   </rim:Slot>
   <rim:Slot name="languageCode">
    <rim:ValueList>
     <rim:Value>en-us</rim:Value>
    </rim:ValueList>
   </rim:Slot>
  </rim:ExtrinsicObject>
 </rim:RegistryObjectList>
</AdhocQueryResponse>
```
<rim:Slot name="serviceStartTime">
 <rim:ValueList>
 <rim:Value>200412230800</rim:Value>
 </rim:ValueList>
</rim:Slot>

<rim:Slot name="serviceStopTime">
 <rim:ValueList>
 <rim:Value>200412230801</rim:Value>
 </rim:ValueList>
</rim:Slot>

<rim:Slot name="size">
 <rim:ValueList>
 <rim:Value>54449</rim:Value>
 </rim:ValueList>
</rim:Slot>

<rim:Slot name="sourcePatientId">
 <rim:ValueList>
 <rim:Value>jd12323^^^wsh</rim:Value>
 </rim:ValueList>
</rim:Slot>

<rim:Slot name="sourcePatientInfo">
 <rim:ValueList>
 <rim:Value>PID-3|pid1^^^domain</rim:Value>
 <rim:Value>PID-5|Doe^John^^^</rim:Value>
 <rim:Value>PID-7|19560527</rim:Value>
 <rim:Value>PID-8|M</rim:Value>
 <rim:Value>PID-11|100 Main St^^Metropolis^Il^44130^USA</rim:Value>
 </rim:ValueList>
</rim:Slot>

<rim:Name>
 <rim:LocalizedString charset="UTF-8" value="Pharmacy Prescription" xml:lang="en-us"/>
</rim:Name>

<rim:Classification>
 classificationScheme="urn:uuid:41a5887f-8865-4c09-adf7-e362475b143a"
 classifiedObject="urn:uuid:08a15a6f-5b4a-42de-8f95-89474f83abdf"
 id="urn:uuid:ac872fc0-1c6e-439f-84d1-f76770a0ccdf"
 nodeRepresentation="57833-6"
 objectType="Urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:Classification">
 <rim:Slot name="codingScheme">
 <rim:ValueList>
 <rim:Value>Connect-a-thon classCodes</rim:Value>
 </rim:ValueList>
 </rim:Slot>
 </rim:Classification>

<rim:Classification>
 classificationScheme="urn:uuid:f4f85eac-e6cb-4883-b524-f2705394840f"
 classifiedObject="urn:uuid:08a15a6f-5b4a-42de-8f95-89474f83abdf"
 id="urn:uuid:fa8c8e43-3593-4777-b7e0-8b0773378705"
 nodeRepresentation="N"
 objectType="Urn:oasis:names:tc:ebxml-regrep:ObjectType:RegistryObject:Classification">
 <rim:Slot name="codingScheme">

 </rim:Slot>
 </rim:Classification>
3.1.5 Security Considerations

Relevant XDS Affinity Domain Security background is discussed in the XDS Security Considerations Section (see ITI TF-1: 10.7).

3.1.5.1 Security Audit Considerations

The Actors involved shall record audit events according to the following:
3.1.5.1.1 Querying actor audit message:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EventAuditMessage/EventIdentification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EventID</td>
<td>M</td>
<td>EV(110112, DCM, “Query”)</td>
</tr>
<tr>
<td>EventActionCode</td>
<td>M</td>
<td>“E” (Execute)</td>
</tr>
<tr>
<td>EventDateTime</td>
<td>M</td>
<td>not specialized</td>
</tr>
<tr>
<td>EventOutcomeIndicator</td>
<td>M</td>
<td>not specialized</td>
</tr>
<tr>
<td>EventTypeCode</td>
<td></td>
<td>EV(“PHARM-1”, “IHE Transactions”, “Query Pharmacy Documents”)</td>
</tr>
<tr>
<td>Source (Document Consumer) (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Requestor (0..n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination (Document Registry) (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audit Source (Document Consumer) (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient (0..1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query Parameters(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where:

<table>
<thead>
<tr>
<th>Source (Document Consumer/ActiveParticipant)</th>
<th>UserID</th>
<th>M</th>
<th>The content of the wsa:ReplyTo/ element.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlternativeUserID</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UserName</td>
<td>U</td>
<td></td>
<td>not specialized</td>
</tr>
<tr>
<td>UserIsRequestor</td>
<td>M</td>
<td></td>
<td>“true”</td>
</tr>
<tr>
<td>RoleIDCode</td>
<td>M</td>
<td></td>
<td>EV(110153, DCM, “Source”)</td>
</tr>
<tr>
<td>NetworkAccessPointTypeCode</td>
<td>M</td>
<td></td>
<td>“1” for machine (DNS) name, “2” for IP address</td>
</tr>
<tr>
<td>NetworkAccessPointID</td>
<td>M</td>
<td></td>
<td>The machine name or IP address, as specified in RFC 3881.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Requestor (if known)/ActiveParticipant</th>
<th>UserID</th>
<th>M</th>
<th>Identity of the human that initiated the transaction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlternativeUserID</td>
<td>U</td>
<td></td>
<td>not specialized</td>
</tr>
<tr>
<td>UserName</td>
<td>U</td>
<td></td>
<td>not specialized</td>
</tr>
<tr>
<td>UserIsRequestor</td>
<td>M</td>
<td></td>
<td>“true”</td>
</tr>
<tr>
<td>RoleIDCode</td>
<td>U</td>
<td></td>
<td>Access Control role(s) the user holds that allows this transaction.</td>
</tr>
<tr>
<td>NetworkAccessPointTypeCode</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NetworkAccessPointID</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination (Document Consumer/ActiveParticipant)</th>
<th>UserID</th>
<th>M</th>
<th>SOAP endpoint URI.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlternativeUserID</td>
<td>U</td>
<td></td>
<td>not specialized</td>
</tr>
<tr>
<td>UserName</td>
<td>U</td>
<td></td>
<td>not specialized</td>
</tr>
<tr>
<td>UserIsRequestor</td>
<td>M</td>
<td></td>
<td>“false”</td>
</tr>
<tr>
<td>RoleIDCode</td>
<td>M</td>
<td></td>
<td>EV(110152, DCM, “Destination”)</td>
</tr>
<tr>
<td>NetworkAccessPointTypeCode</td>
<td>M</td>
<td></td>
<td>“1” for machine (DNS) name, “2” for IP address</td>
</tr>
</tbody>
</table>
NetworkAccessPointID

| NetworkAccessPointID | M | The machine name or IP address, as specified in RFC 3881. |

Audit Source

| AuditMessage/AuditSourceIdentification | | |
|--|-----------------------------|
| AuditSourceID | U | Not specialized. |
| AuditEnterpriseSiteID | U | not specialized |
| AuditSourceTypeCode | U | not specialized |

Patient

| ParticipantObjectIdentification | | |
|---------------------------------|-----------------------------|
| ParticipantObjectTypeCode | M | “1” (Person) |
| ParticipantObjectTypeCodeRole | M | “1” (Patient) |
| ParticipantObjectDataLifeCycle | U | not specialized |
| ParticipantObjectIDTypeCode | M | EV(2, RFC-3881, “Patient Number”) |
| ParticipantObjectSensitivity | U | not specialized |
| ParticipantObjectID | M | The patient ID in HL7 CX format. |
| ParticipantObjectName | U | not specialized |
| ParticipantObjectQuery | U | not specialized |
| ParticipantObjectDetail | U | not specialized |

Query Parameters

| ParticipantObjectIdentification | | |
|---------------------------------|-----------------------------|
| ParticipantObjectTypeCode | M | “2” (system object) |
| ParticipantObjectTypeCodeRole | M | “24” (query) |
| ParticipantObjectDataLifeCycle | U | not specialized |
| ParticipantObjectIDTypeCode | M | EV(“PHARM-1”, “IHE Transactions”, “Query Pharmacy Documents”) |
| ParticipantObjectSensitivity | U | not specialized |
| ParticipantObjectID | M | Stored Query ID (UUID) |
| ParticipantObjectName | C | If known the value of `<ihe:HomeCommunityId/>` |
| ParticipantObjectQuery | M | the AdhocQueryRequest, base64 encoded. |

ParticipantObjectDetail

<table>
<thead>
<tr>
<th>ParticipantObjectDetail</th>
<th>C</th>
<th>The ParticipantObjectDetail element may occur more than once.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In one element, set “QueryEncoding”as the value of the attribute type, Set the attribute value to the character encoding, such as “UTF-8”, used to encode the ParticipantObjectQuery before base64 encoding.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In another element, set “urn:ihe:iti:xca:2010:homeCommunityId” as the value of the attribute type and the value of the homeCommunityID as the value of the attribute value, if known.</td>
</tr>
</tbody>
</table>
3.1.5.1.2 Community Pharmacy Manager audit message:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event ID</td>
<td>M</td>
<td>EV(110112, DCM, “Query”)</td>
</tr>
<tr>
<td>EventActionCode</td>
<td>M</td>
<td>“E” (Execute)</td>
</tr>
<tr>
<td>EventDateTime</td>
<td>M</td>
<td>not specialized</td>
</tr>
<tr>
<td>EventOutcomeIndicator</td>
<td>M</td>
<td>not specialized</td>
</tr>
<tr>
<td>EventTypeCode</td>
<td>M</td>
<td>EV(“PHARM-1”, “IHE Transactions”, “Query Pharmacy Documents”)</td>
</tr>
<tr>
<td>Source (Document Consumer) (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination (Document Registry) (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audit Source (Document Registry) (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient (0..1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query Parameters(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where:

<table>
<thead>
<tr>
<th>Source AuditMessage/ActiveParticipant</th>
<th>UserID</th>
<th>M</th>
<th>The content of the wsa:ReplyTo/ element.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlternativeUserID</td>
<td>U</td>
<td></td>
<td>not specialized</td>
</tr>
<tr>
<td>UserName</td>
<td>U</td>
<td></td>
<td>not specialized</td>
</tr>
<tr>
<td>UserIsRequestor</td>
<td>M</td>
<td></td>
<td>“true”</td>
</tr>
<tr>
<td>RoleIDCode</td>
<td>M</td>
<td></td>
<td>EV(110153, DCM, “Source”)</td>
</tr>
<tr>
<td>NetworkAccessPointTypeCode</td>
<td>M</td>
<td></td>
<td>“1” for machine (DNS) name, “2” for IP address</td>
</tr>
<tr>
<td>NetworkAccessPointID</td>
<td>M</td>
<td></td>
<td>The machine name or IP address, as specified in RFC 3881.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination AuditMessage/ActiveParticipant</th>
<th>UserID</th>
<th>M</th>
<th>SOAP endpoint URI.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlternativeUserID</td>
<td>M</td>
<td></td>
<td>the process ID as used within the local operating system in the local system logs.</td>
</tr>
<tr>
<td>UserName</td>
<td>U</td>
<td></td>
<td>not specialized</td>
</tr>
<tr>
<td>UserIsRequestor</td>
<td>M</td>
<td></td>
<td>“false”</td>
</tr>
<tr>
<td>RoleIDCode</td>
<td>M</td>
<td></td>
<td>EV(110152, DCM, “Destination”)</td>
</tr>
<tr>
<td>NetworkAccessPointTypeCode</td>
<td>M</td>
<td></td>
<td>“1” for machine (DNS) name, “2” for IP address</td>
</tr>
<tr>
<td>NetworkAccessPointID</td>
<td>M</td>
<td></td>
<td>The machine name or IP address, as specified in RFC 3881.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Audit Source AuditMessage/AuditSourceIdentification</th>
<th>AuditSourceID</th>
<th>U</th>
<th>not specialized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AuditEnterpriseSiteID</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td></td>
<td>AuditSourceTypeCode</td>
<td>U</td>
<td>not specialized</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient (AuditMessage/ParticipantObject)</th>
<th>ParticipantObjectTypeCode</th>
<th>M</th>
<th>“1” (Person)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ParticipantObjectTypeCodeRole</td>
<td>M</td>
<td>“1” (Patient)</td>
</tr>
</tbody>
</table>
ctIdentification

<table>
<thead>
<tr>
<th>Element</th>
<th>Mappings</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ParticipantObjectDataLifeCycle</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>ParticipantObjectIDTypeCode</td>
<td>M EV(2, RFC-3881, “Patient Number”)</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectSensitivity</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>ParticipantObjectName</td>
<td>M The patient ID in HL7 CX format.</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectQuery</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>ParticipantObjectDetail</td>
<td>C</td>
<td>The ParticipantObjectDetail element may occur more than once. In one element, set “QueryEncoding” as the value of the attribute type, Set the attribute value to the character encoding, such as “UTF-8”, used to encode the ParticipantObjectQuery before base64 encoding. In another element, set “urn:ihe:iti:xca:2010:homeCommunityId” as the value of the attribute type and the value of the homeCommunityID as the value of the attribute value, if known.</td>
</tr>
</tbody>
</table>

Query Parameters

<table>
<thead>
<tr>
<th>Element</th>
<th>Mappings</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ParticipantObjectTypeCode</td>
<td>M “2” (system object)</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectTypeCodeRole</td>
<td>M “24” (query)</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectDataLifeCycle</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>ParticipantObjectIDTypeCode</td>
<td>M EV(“PHARM-1”, “IHE Transactions”, “Query Pharmacy Documents”)</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectSensitivity</td>
<td>U not specialized</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectID</td>
<td>M Stored Query ID (UUID)</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectName</td>
<td>C If known the value of ihe:HomeCommunityId/</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectQuery</td>
<td>M the AdhocQueryRequest, base64 encoded.</td>
<td></td>
</tr>
</tbody>
</table>

3.1.5.1.(z) Actor Specific Security Considerations

No information available yet.
4 Workflow Definitions

The management of the workflow related to clinical process has becoming a fundamental topic with the increasing of the use by different sectors of document sharing related IHE profiles with their different types of document and information.

4.1 Community Medication Prescription and Dispense Workflow Definition (CMPD-WD)

The management of the workflow related to the CMPD profile is involved in much clinical and organizational process for its important role in the process of digitalization. The lack of a workflow management blocks the use of the Prescription in an extended way. The definition of a workflow with defined rules and tasks is needed in a scenario cross enterprise in which many actors are involved in the same process.

In this chapter a set of rules which defines the workflow of the CMPD process and the relationship with the actors involved are described. If real-world scenarios need a technical workflow management the actors involved in the process can use the “Workflow Management” option which groups the CMPD actors with the XDW actors.

The ITI XDW profile is a core component of a common, workflow-independent interoperability infrastructure that provides a platform upon which a wide range of specific workflows can be defined by “content specialization” with minimal specification and implementation efforts by the different domains. For the definition of the CMPD workflow it is possible to use the ITI XDW profile as an infrastructure layer to define a set logical or clinical tasks definitions and rules to apply. The rules in the workflow definition ensure that the different participants in a workflow operate jointly to advance within tasks and to move from one task to another in a consistent way.

To integrate the CMPD profile with ITI XDW profile it is necessary to introduce the integrations described in the follow paragraphs.

4.1.1 Actors and Grouping

If the “Workflow Management” option is supported the following CMPD actors shall be grouped with XDW actors to allow access and manipulation of the XDW-WD (XDW Workflow document).

<table>
<thead>
<tr>
<th>Actor</th>
<th>Groups with</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescription Placer</td>
<td>XDW: Content Creator</td>
<td>The Prescription Placer actor shall create the XDW-WD to start the process.</td>
</tr>
<tr>
<td></td>
<td>XDW: Content Consumer</td>
<td>It also consumes and maybe updates the XDW-WD document in case of modification to the Prescription.</td>
</tr>
<tr>
<td></td>
<td>XDW: Content Updater</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Adviser</td>
<td>XDW: Content Consumer</td>
<td>The Pharmaceutical Adviser actor consumes and updates the XDW-WD after validation of a Prescription Item.</td>
</tr>
<tr>
<td></td>
<td>XDW: Content Updater</td>
<td></td>
</tr>
</tbody>
</table>
Medication Dispenser & XDW: Content Consumer & XDW: Content Updater

4.1.2 XDW Workflow Document – Common Attributes

The CMPD Workflow Definition does not introduce new metadata and all the metadata elements used are the common XDS document metadata specified in ITI TF-3:4.1.5 and in ITI TF-3:5.4.6. In this section only the use of some specific metadata for the use of XDW in the CMPD context is specified.

<table>
<thead>
<tr>
<th>XDSDocumentEntry Attribute</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>typeCode</td>
<td>For the Workflow Document which tracks the CMPD process the code for the typeCode shall be: Scenario 1: urn:ihe:pharm:cmpdwd1:2011 Scenario 2: urn:ihe:pharm:cmpdwd2:2011 Note: see chapter 4.1.3 for a description of the two workflow scenarios. This code is the same code that shall be used in the element <code>workflowDefinitionReference</code> inside the Workflow Document.</td>
</tr>
<tr>
<td>eventCodeList</td>
<td>Rule 1: A CMPD workflow shall be created with code OPEN and shall remain in this status until it is set to CLOSE. Rule 2: A CMPD workflow should be set to CLOSE by any actor which discovers that the partial workflow of each Prescription Item within (for which a task “Ordering” has been created) has ended either by a complete dispense of the item or any other way (e.g., a cancelation, etc.). See ITI TF-3: 5.4.5.7 for a general description of this attribute.</td>
</tr>
<tr>
<td>serviceStartTime</td>
<td>It is the time at which work began on the earliest task for this workflow.</td>
</tr>
<tr>
<td>serviceStopTime</td>
<td>It is the time at which the status of the overall Workflow is changed from OPEN to CLOSE. It shall be empty when the workflow is still in OPEN state.</td>
</tr>
</tbody>
</table>

4.1.3 Workflow Task Definition

This chapter describes Workflow Tasks which are used in the XDW Workflow document to express a Community Pharmacy workflow.

The Community Pharmacy workflow can be divided in two different scenarios:
Scenario 1: Including validation step

Figure 4.1.3-1: Scenario 1: Overall context of the workflow

PHARM-1, Query: FindPrescriptionsForValidation
- Prescription document contains at least one Prescription Item ready to be validated.
- A Prescription Item is ready to validate if there exists no Pharmaceutical Advice Item related to it which has statusCode set to "completed".

PHARM-1, Query: FindPrescriptionsForDispense
- Prescription document contains at least one Prescription Item ready to be dispensed.
- A Prescription Item is ready to dispense if there exists a Pharmaceutical Advice Item related to it which has statusCode set to "completed" and code=OK or CHANGE.
Scenario 2: Not including validation step

![Diagram of Scenario 2: Overall context of the workflow](image)

Figure 4.1.3-2: Scenario 2: Overall context of the workflow

Please refer to Volume 1, chapter 4.4 CMPD Process Flow for a detailed explanation of the Community Pharmacy workflow scenarios.

The following workflow tasks are defined and specified in detail in the following chapters:

- Ordering
- Validation
- Dispensing

Important note: When referencing input and output documents in tasks, both document uniqueId and homeCommunityId of the document shall be used.
4.1.3.1 Task: Ordering

The task “Ordering” starts the Community Pharmacy workflow by creation of the Workflow document together with a single Prescription document. The task is able to record the creation of a single Prescription Item (within a Prescription), hence separate tasks have to be created for each Prescription Item of the Prescription.

Figure 4.1.3.1-1: Prescription containing Prescription Items leading to workflow tasks “Ordering”

<table>
<thead>
<tr>
<th>Task attributes</th>
<th>Rules for the task “Ordering”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task id</td>
<td>Unique id of the instance of the task</td>
</tr>
<tr>
<td>Task type</td>
<td>Ordering</td>
</tr>
<tr>
<td>Task name</td>
<td>Order_of_Prescription_Item</td>
</tr>
<tr>
<td>Task description</td>
<td>The description element shall contain the PrescriptionItemld, this task is referring to (substanceAdministration/id element of the Prescription Item).</td>
</tr>
</tbody>
</table>
Task attributes | Rules for the task “Ordering”
--- | ---
Format compliant to the HL7 v2 CX datatype:

Variant 1: Only id/@root is given
$desc = substanceAdministration/id/@root

Variant 2: id/@root and id/@extension is given
$desc = concat(
 substanceAdministration/id/extension,"^^^&",
 substanceAdministration/id/@root,"&ISO")

Task dependencies	Workflow scenario 1
Ancestors: None, Validation
Successors: Validation

Workflow scenario 2
Ancestors: None
Successors:Dispensing

Status allowed | COMPLETED
An Ordering task is always set to COMPLETED.

Status transactions | None

input | • Optional
 o All documents useful to understand the reason for the prescription (clinical reports, …) may be referenced.

output | • Required
 o The Prescription document produced shall be referenced.

owner | Same Physician or organization that creates the Prescription document

owner changes | No

Example XML for this XDW task:

```
<ns3:taskData>
  <ns2:taskDetails>
    <ns2:id>urn:oid:1.1.1.1</ns2:id>
    <ns2:taskType>Ordering</ns2:taskType>
    <ns2:name>Order_of_Prescription_Item</ns2:name>
    <ns2:status>COMPLETED</ns2:status>
  </ns2:taskDetails>
</ns3:taskData>
```
The description element shall contain the PrescriptionItemId, this task is referring to (substanceAdministration/id element of the Prescription Item)

```
<ns2:description>4711^^^&1.2.3.4.5.6.7.8.9&amp;ISO</ns2:description>
```

<!-- input documents -->
```
<ns2:input>
    <ns2:part name="document">
        <!-- Document useful to understand the reason of the prescription -->
        <!-- uid: the document uniqueId, home: the homeCommunityId -->
        <reference uid="urn:oid:1.2.3.4.4.3.2.2.3" home="urn:oid:1.2.3"/>
    </ns2:part>
</ns2:input>
```

<!-- output documents -->
```
<ns2:output>
    <ns2:part name="Prescription_Document">
        <!-- Prescription document according to PRE profile -->
        <!-- uid: the document uniqueId, home: the homeCommunityId -->
        <reference uid="urn:oid:1.2.3.4.4.4.4.4" home="urn:oid:1.2.3"/>
    </ns2:part>
</ns2:output>
```

`<ns3:taskData>`
4.1.3.2 Task: Validation

The task “Validation” is able to record the validation of a single Prescription Item (within a Prescription). Each validation results in the creation of a Pharmaceutical Advice document which documents the outcome of the validation. Hence separate tasks have to be created for each Prescription Item of the Prescription which is validated.

![Prescription Items leading to workflow tasks “Validation”](image)

Figure 4.1.3.2-1: Prescription Items leading to workflow tasks “Validation”

<table>
<thead>
<tr>
<th>Task attributes</th>
<th>Rules for the task “Validation”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task id</td>
<td>Unique id of the instance of the task</td>
</tr>
<tr>
<td>Task type</td>
<td>Validation</td>
</tr>
<tr>
<td>Task name</td>
<td>Validation_of_Prescription_Item</td>
</tr>
<tr>
<td>Task description</td>
<td>The description element shall contain the PrescriptionItemld, this task is referring to (substanceAdministration/id element of the Prescription Item). Format compliant to the HL7 v2 CX datatype:</td>
</tr>
<tr>
<td></td>
<td>Variant 1: Only id/@root is given</td>
</tr>
</tbody>
</table>

Table 4.1.3.2-1: Validation Task Rules
Task attributes

<table>
<thead>
<tr>
<th>Rules for the task “Validation”</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{desc} = \text{substanceAdministration/id/@root}$</td>
</tr>
<tr>
<td>$\text{Variant 2: id/@root and id/@extension is given}$</td>
</tr>
<tr>
<td>$\text{desc} = \text{concat}(\text{substanceAdministration/id/@extension}, "^^^&", \text{substanceAdministration/id/@root}, "&\text{ISO}")$</td>
</tr>
</tbody>
</table>

Task dependencies

Workflow scenario 1
- Ancestors: Ordering
- Successors: Dispensing, Ordering

Workflow scenario 2
- Not applicable

Status allowed

IN PROGRESS
A Validation task shall be set to IN PROGRESS, when the outcome of the task is a *preliminary* validation result. A Pharmaceutical Advice document is preliminary, if the element statusCode is set to *active*.

COMPLETED
A Validation task shall be set to COMPLETED, when the outcome of the task is a *final* validation result. A Pharmaceutical Advice document is final, if the element statusCode is set to *completed*.

Note: See Pharmacy Pharmaceutical Advice (PADV) profile, Vol. 2, chapter “6.3.4.3.3.6 Status Code”.

Status transactions

All the states of the task (in progress, completed) are performed in sequence

input

- **Required**
 - The Prescription document containing the validated Prescription Item shall be referenced. The specific Prescription Item the task is referring to shall also be stated in that structure.
 - The ancestor task shall be referenced.

- **Optional**
 - All additional documents useful to understand the reason for the outcome of the Pharmaceutical Advice may be referenced.

output

- **Required**
 - The Pharmaceutical Advice document produced shall be referenced.

owner

Same Physician or organization that creates the Pharmaceutical Advice document

changes of task owner

Yes
Task attributes

<table>
<thead>
<tr>
<th>Rules for the task “Validation”</th>
</tr>
</thead>
<tbody>
<tr>
<td>The owner may change, if more than one Pharmaceutical Advice documents are created (in case of a multi-step validation using preliminary validation).</td>
</tr>
</tbody>
</table>

Example XML for this XDW task:

```xml
<ns3:taskData>
  <ns2:taskDetails>
    <ns2:id>urn:oid:2.2.2.2.2</ns2:id>
    <ns2:taskType>Validation</ns2:taskType>
    <ns2:name>Validation_of_Prescription_Item</ns2:name>
    <ns2:status>COMPLETED</ns2:status>
    <ns2:actualOwner>Dr. Brum</ns2:actualOwner>
    <ns2:createdTime>2006-05-04T18:13:51.0Z</ns2:createdTime>
    <ns2:createdBy>Dr. Brum</ns2:createdBy>
    <ns2:lastModifiedTime>2006-05-04T18:13:51.0Z</ns2:lastModifiedTime>
    <ns2:renderingMethodExists>false</ns2:renderingMethodExists>
  </ns2:taskDetails>

  <!-- The description element shall contain the PrescriptionItemId, this task is referring to (substanceAdministration/id element of the Prescription Item) -->
  <ns2:description>4711^^^&amp;1.2.3.4.5.6.7.8.9&amp;ISO</ns2:description>

  <!-- input documents -->
  <ns2:input>
    <ns2:part name="Prescription_Document">
      <!-- Prescription document according to PRE profile -->
      <!-- uid: the document uniqueId, home: the homeCommunityId -->
      <reference uid="urn:oid:1.2.3.4.4.4" home="urn:oid:1.2.3"/>
    </ns2:part>
    <ns2:part name="Ancestor_task">
      <!-- Ancestor task -->
      <reference taskId="urn:oid:1.1.1.1"/>
    </ns2:part>
  </ns2:input>

  <!-- output documents -->
  <ns2:output>
    <ns2:part name="Pharmaceutical_Advice_Document">
      <!-- Pharmaceutical Advice document according to PADV profile -->
      <!-- uid: the document uniqueId, home: the homeCommunityId -->
      <reference uid="urn:oid:1.2.3.4.4.5" home="urn:oid:1.2.3"/>
    </ns2:part>
  </ns2:output>
</ns3:taskData>
```
4.1.3.3 Task: Dispensing

The task “Dispensing” is able to record the dispense of a single Prescription Item (within a Prescription). Each dispense results in the creation of a Medication Dispense document. Hence separate tasks have to be created for each Prescription Item of the Prescription which is dispensed.

Table 4.1.3.3-1: Dispensing Task Rules

<table>
<thead>
<tr>
<th>Task attributes</th>
<th>Rules for the task “Dispensing”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task id</td>
<td>Unique id of the instance of the task</td>
</tr>
<tr>
<td>Task type</td>
<td>Dispensing</td>
</tr>
<tr>
<td>Task name</td>
<td>Dispense_of_Prescription_Item</td>
</tr>
<tr>
<td>Task description</td>
<td>The description element shall contain the PrescriptionItemId, this task is referring to (substanceAdministration/id element of the Prescription Item). Format compliant to the HL7 v2 CX datatype:</td>
</tr>
<tr>
<td>Ordering 1</td>
<td></td>
</tr>
<tr>
<td>Ordering 2</td>
<td></td>
</tr>
<tr>
<td>Ordering 3</td>
<td></td>
</tr>
<tr>
<td>Validation 1</td>
<td></td>
</tr>
<tr>
<td>Validation 2</td>
<td></td>
</tr>
<tr>
<td>Validation 3</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.1.3.3-1: Prescription Items leading to workflow tasks “Dispensing”
Task attributes

<table>
<thead>
<tr>
<th>Rules for the task “Dispensing”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant 1: Only id/root is given</td>
</tr>
<tr>
<td>$desc = substanceAdministration/id/root</td>
</tr>
<tr>
<td>Variant 2: id/root and id/extension is given</td>
</tr>
<tr>
<td>$desc = concat(substanceAdministration/id/extension, "^^^&", substanceAdministration/id/root, "&ISO")</td>
</tr>
</tbody>
</table>

Task dependencies

Workflow scenario 1
- Ancestors: Validation
- Successors: None

Workflow scenario 2
- Ancestors: Ordering
- Successors: None

Status allowed

IN PROGRESS
A Dispensing task shall be set to IN PROGRESS, when the order is repeatable and the current dispense is *not the last* repeat.

COMPLETED
A Dispensing task shall be set to IN PROGRESS, when the order is repeatable and the current dispense is the *last* repeat.

Note: See Pharmacy Prescription (PRE) profile, Vol. 2, chapter “6.3.4.1.3.21 Amount of units of the consumable to dispense”.

Status transactions

All the states of the task (in progress, completed) are performed in sequence.

input

- Required
 - The Prescription document containing the dispensed Prescription Item shall be referenced. The specific Prescription Item the task is referring to shall also be stated in that structure.
 - Additional in scenario 2: The Pharmaceutical Advice document related to the Prescription Item which approved the dispensing act shall be referenced.
 - The ancestor task shall be referenced.

output

- Required
 - The Medication Dispense document produced shall be referenced in the Output element of this task.

owner

Same Physician or organization that creates the Dispense document.

changes of task owner

Yes
The owner may change, if more than one Dispense documents are created (in case of a repeatable order).
Task attributes	Rules for the task “Dispensing”
<taskEvent> | At least one

Example XML for this XDW task:

```xml
<ns3:taskData>
  <ns2:taskDetails>
    <ns2:id>urn:oid:3.3.3.3</ns2:id>
    <ns2:taskType>Dispensing</ns2:taskType>
    <ns2:name>Dispense_of_Prescription_Item</ns2:name>
    <ns2:status>COMPLETED</ns2:status>
    <ns2:actualOwner>Dr. Brum</ns2:actualOwner>
    <ns2:createdTime>2006-05-04T18:13:51.0Z</ns2:createdTime>
    <ns2:createdBy>Dr. Brum</ns2:createdBy>
    <ns2:lastModifiedTime>2006-05-04T18:13:51.0Z</ns2:lastModifiedTime>
    <ns2:renderingMethodExists>false</ns2:renderingMethodExists>
  </ns2:taskDetails>

  <!-- The description element shall contain the PrescriptionItemId, this task is
  referring to (substanceAdministration/id element of the Prescription Item) -->
  <ns2:description>4711^^^&amp;1.2.3.4.5.6.7.8.9&amp;ISO</ns2:description>

  <!-- input documents -->
  <ns2:input>
    <ns2:part name="Prescription_Document">
      <!-- Prescription document according to PRE profile -->
      <!-- uid: the document uniqueId, home: the homeCommunityId -->
      <reference uid="urn:oid:1.2.3.4.4.4" home="urn:oid:1.2.3"/>
    </ns2:part>
    <ns2:part name="Pharmaceutical_Advice_Document">
      <!-- Pharmaceutical Advice document according to PADV profile -->
      <!-- uid: the document uniqueId, home: the homeCommunityId -->
      <reference uid="urn:oid:1.2.3.4.4.5" home="urn:oid:1.2.3"/>
    </ns2:part>
    <ns2:part name="Ancestor_task">
      <!-- Ancestor task -->
      <reference taskId="urn:oid:2.2.2.2"/>
    </ns2:part>
  </ns2:input>

  <!-- output documents -->
  <ns2:output>
    <ns2:part name="Dispense_Document">
      <!-- Dispense document according to DIS profile -->
    </ns2:part>
  </ns2:output>
</ns3:taskData>
```
<!-- uid: the document uniqueId, home: the homeCommunityId -->
<reference uid="urn:oid:1.2.3.4.4.6" home="urn:oid:1.2.3.4.6.2"/>
</ns2:part>
</ns2:output>
</ns3:taskData>
Glossary

Add the following terms to the Glossary:

No new terms