IHE IT Infrastructure
Technical Framework Supplement

Patient Demographics Query for Mobile (PDQm)

Trial Implementation

Date: August 28, 2014
Author: IHE ITI Technical Committee
Email: iti@ihe.net

Please verify you have the most recent version of this document. See here for Trial Implementation and Final Text versions and here for Public Comment versions.
Foreword

This is a supplement to the IHE IT Infrastructure Technical Framework V11.0. Each supplement undergoes a process of public comment and trial implementation before being incorporated into the volumes of the Technical Frameworks.

This supplement is published on August 28, 2014 for trial implementation and may be available for testing at subsequent IHE Connectathons. The supplement may be amended based on the results of testing. Following successful testing it will be incorporated into the IT Infrastructure Technical Framework. Comments are invited and can be submitted at http://www.ihe.net/ITI_Public_Comments.

This supplement describes changes to the existing technical framework documents.

“Boxed” instructions like the sample below indicate to the Volume Editor how to integrate the relevant section(s) into the relevant Technical Framework volume.

Amend Section X.X by the following:

Where the amendment adds text, make the added text bold underline. Where the amendment removes text, make the removed text bold strikethrough. When entire new sections are added, introduce with editor’s instructions to “add new text” or similar, which for readability are not bolded or underlined.

General information about IHE can be found at: http://ihe.net.

Information about the IHE IT Infrastructure domain can be found at: http://ihe.net/IHE_Domains.

Information about the organization of IHE Technical Frameworks and Supplements and the process used to create them can be found at: http://ihe.net/IHE_Process and http://ihe.net/Profiles.

The current version of the IHE IT Infrastructure Technical Framework can be found at: http://ihe.net/Resources/Technical_Frameworks.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to this Supplement</td>
<td>6</td>
</tr>
<tr>
<td>Open Issues and Questions</td>
<td>7</td>
</tr>
<tr>
<td>Closed Issues</td>
<td>8</td>
</tr>
<tr>
<td>General Introduction</td>
<td>12</td>
</tr>
<tr>
<td>Appendix A - Actor Summary Definitions</td>
<td>12</td>
</tr>
<tr>
<td>Appendix B - Transaction Summary Definitions</td>
<td>12</td>
</tr>
<tr>
<td>Glossary</td>
<td>12</td>
</tr>
<tr>
<td>Volume 1 – Profiles</td>
<td>13</td>
</tr>
<tr>
<td>Copyright Licenses</td>
<td>13</td>
</tr>
<tr>
<td>8.6 PDQ Cross Profile Considerations</td>
<td>13</td>
</tr>
<tr>
<td>24.6 PDQv3 Cross Profile Considerations</td>
<td>13</td>
</tr>
<tr>
<td>38 PDQm – Patient Demographics Query for Mobile</td>
<td>13</td>
</tr>
<tr>
<td>38.1 PDQm Actors, Transactions, and Content Modules</td>
<td>13</td>
</tr>
<tr>
<td>38.1.1 Actor Descriptions and Actor Profile Requirements</td>
<td>14</td>
</tr>
<tr>
<td>No additional requirements.</td>
<td>14</td>
</tr>
<tr>
<td>38.2 PDQm Actor Options</td>
<td>14</td>
</tr>
<tr>
<td>38.2.1 Continuation Option</td>
<td>15</td>
</tr>
<tr>
<td>38.2.2 Pediatric Demographics</td>
<td>15</td>
</tr>
<tr>
<td>38.3 PDQm Required Actor Groupings</td>
<td>16</td>
</tr>
<tr>
<td>38.4 PDQm Overview</td>
<td>16</td>
</tr>
<tr>
<td>38.4.1 Concepts</td>
<td>16</td>
</tr>
<tr>
<td>38.4.2 Use Cases</td>
<td>17</td>
</tr>
<tr>
<td>38.4.2.1 Use Case #1: Patient Information Entering at Bedside</td>
<td>17</td>
</tr>
<tr>
<td>38.4.2.2 Use Case #2: Patient Identity Information Entering in Physician Offices</td>
<td>18</td>
</tr>
<tr>
<td>38.4.2.2.1 Patient Identity Information Entering in Physician Offices Use Case Description</td>
<td>18</td>
</tr>
<tr>
<td>38.4.2.3 Use Case #3: Patient Demographics Query in an Enterprise with Multiple</td>
<td>18</td>
</tr>
<tr>
<td>38.4.2.3.1 Patient Demographics Query in an Enterprise with Multiple Patient ID Domains Use Case Description</td>
<td>18</td>
</tr>
<tr>
<td>38.4.3 Basic Process Flow in Patient Demographics Query for Mobile</td>
<td>18</td>
</tr>
<tr>
<td>38.5 PDQm Security Considerations</td>
<td>19</td>
</tr>
<tr>
<td>38.6 PDQm Cross Profile Considerations</td>
<td>19</td>
</tr>
<tr>
<td>Volume 2 – Transactions</td>
<td>22</td>
</tr>
<tr>
<td>3.78 Mobile Patient Demographics Query [ITI-78]</td>
<td>22</td>
</tr>
<tr>
<td>3.78.1 Scope</td>
<td>22</td>
</tr>
<tr>
<td>3.78.2 Actor Roles</td>
<td>22</td>
</tr>
<tr>
<td>3.78.3 Referenced Standards</td>
<td>23</td>
</tr>
<tr>
<td>3.78.4 Interaction Diagram</td>
<td>23</td>
</tr>
<tr>
<td>3.78.4.1 Query Patient Resource message</td>
<td>23</td>
</tr>
<tr>
<td>3.78.4.1.1 Trigger Events</td>
<td>24</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>3.78.4.1.2 Message Semantics</td>
<td>24</td>
</tr>
<tr>
<td>3.78.4.1.2.1 Query Search Parameters</td>
<td>25</td>
</tr>
<tr>
<td>3.78.4.1.2.2 Pediatric Demographics Query Search Parameters</td>
<td>27</td>
</tr>
<tr>
<td>3.78.4.1.2.3 Parameter Modifiers</td>
<td>28</td>
</tr>
<tr>
<td>3.78.4.1.2.4 Populating Which Domains are Returned</td>
<td>28</td>
</tr>
<tr>
<td>3.78.4.1.2.5 Populating Expected Response Format</td>
<td>28</td>
</tr>
<tr>
<td>3.78.4.1.2.6 Incremental Queries</td>
<td>29</td>
</tr>
<tr>
<td>3.78.4.1.3 Expected Actions</td>
<td>29</td>
</tr>
<tr>
<td>3.78.4.2 Query Patient Resource Response message</td>
<td>33</td>
</tr>
<tr>
<td>3.78.4.2.1 Trigger Events</td>
<td>33</td>
</tr>
<tr>
<td>3.78.4.2.2 Message Semantics</td>
<td>33</td>
</tr>
<tr>
<td>3.78.4.2.2.1 Patient Resource Definition in the Context of Query Patient Resource Response</td>
<td>33</td>
</tr>
<tr>
<td>3.78.4.2.2.2 Mother’s Maiden Name</td>
<td>35</td>
</tr>
<tr>
<td>3.78.4.2.2.3 Resource Bundling</td>
<td>37</td>
</tr>
<tr>
<td>3.78.4.2.2.4 Incremental Response Processing - Paging of Resource Bundle</td>
<td>37</td>
</tr>
<tr>
<td>3.78.4.2.2.5 Quality of Match</td>
<td>38</td>
</tr>
<tr>
<td>3.78.4.2.3 Expected Actions</td>
<td>38</td>
</tr>
<tr>
<td>3.78.4.2.4 Profile Resource</td>
<td>39</td>
</tr>
<tr>
<td>3.78.4.2.5 Conformance Resource</td>
<td>39</td>
</tr>
<tr>
<td>3.78.4.3 Retrieve Patient Resource message</td>
<td>39</td>
</tr>
<tr>
<td>3.78.4.3.1 Trigger Events</td>
<td>39</td>
</tr>
<tr>
<td>3.78.4.3.2 Message Semantics</td>
<td>39</td>
</tr>
<tr>
<td>3.78.4.3.3 Expected Actions</td>
<td>40</td>
</tr>
<tr>
<td>3.78.4.4 Retrieve Patient Resource Response message</td>
<td>41</td>
</tr>
<tr>
<td>3.78.4.4.1 Trigger Events</td>
<td>41</td>
</tr>
<tr>
<td>3.78.4.4.2 Message Semantics</td>
<td>41</td>
</tr>
<tr>
<td>3.78.4.4.2.1 Patient Resource Definition in the Context of Retrieve Patient Resource Response</td>
<td>41</td>
</tr>
<tr>
<td>3.78.5 Security Considerations</td>
<td>42</td>
</tr>
<tr>
<td>3.78.5.1 Security Audit Considerations</td>
<td>42</td>
</tr>
<tr>
<td>3.78.5.1.1 Patient Demographics Consumer audit message</td>
<td>42</td>
</tr>
<tr>
<td>3.78.5.1.2 Patient Demographics Supplier audit message</td>
<td>43</td>
</tr>
</tbody>
</table>

Appendices...

Appendix Z – FHIR Implementation Material

Z.1 Resource Bundles

Z.1.1 Resource Bundles for Query Results

Z.1.1.1 Resource Bundle “self” Link

Z.1.1.2 Resource Bundle Pagination

Z.2 Query Parameters

Z.2.1 Query Parameter Modifiers

Z.2.2 Token Parameters

Z.2.3 String Parameters

Z.3 Conformance Resource Profile
Introduction to this Supplement

The Patient Demographics Query for Mobile (PDQm) Profile defines a lightweight RESTful interface to a patient demographics supplier leveraging technologies readily available to mobile applications and lightweight browser based applications.

The functionality is identical to the PDQ Profile described in the ITI TF-1:8. The differences are transport and messaging format of messages and queries. The profile leverages HTTP transport, and the JavaScript Object Notation (JSON), Simple-XML, and Representational State Transfer (REST). The payload format is defined by the HL7 Fast Health Interoperable Resources (FHIR) draft standard.

Using these patterns, the PDQm Profile exposes the functionality of a patient demographics supplier to mobile applications and lightweight browser applications.

The following list provides a few examples of how PDQm might be leveraged by implementers:

- A health portal securely exposing demographics data to browser based plugins
- Medical devices which need to access patient demographic information
- Mobile devices used by physicians (example bedside eCharts) which need to establish patient context by scanning a bracelet
- Web based EHR/EMR applications which wish to provide dynamic updates of patient demographic information such as a non-postback search, additional demographic detail, etc.
- Any low resource application which exposes patient demographic search functionality
- Any application using the MHD Profile to access documents may use PDQm to find an appropriate patient identifier

This supplement is intended to be fully compliant with the HL7 FHIR specification, providing only use-case driven constraints to aid with interoperability, deterministic results, and compatibility with existing PDQ and PDQv3 Profiles.

Currently the HL7 FHIR standard is in “Draft Standard for Test Use” (DSTU) and may experience a large amount of change during this phase. Readers are advised that, while the profiled components in this supplement may not accurately reflect the most recent version of the FHIR standard, implementations of PDQm will be tested as specified in this supplement. Changes to the FHIR DSTU will be integrated into this supplement via the formal IHE Change Proposal (CP) process.
Open Issues and Questions

- **PDQm_014**: Pediatrics Option: Mother’s maiden name. Would it be applicable to simply allow any “relationship” with a parent or guardian and still fulfill the use cases within the pediatrics option? Furthermore which pattern to choose in FHIR:
 - Pose this question to the FHIR team.
 - Create an extension called “mothersMaidenName”, however this is single use extension.
 - Use the “contact” relationship. The purpose of the pediatrics option is to distinguish between a record that changes frequently, and/or to track contact details for adults related to the child.
 - Use the “RelatedPerson” resource. This is a little trickier as it will require the profiling of another resource, and it will also introduce an awkward query as Patient does not “have a” RelatedPerson, rather RelatedPerson “has a” Patient.
 - Using the contact relationship as it seems to support the intended use case for PDO, this has been described in the Volume 2 text
 - Keep this open as it will most likely change as FHIR evolves. Currently it is stored in “contact” relationship.

- **PDQ_024**: FHIR mandates that server implementers support the _id parameter in the search operation. During the PDQm review of query parameters there was some discussion as to the relevance of _id in the context of PDQm. Currently the _id query parameter is minimal in its description as there are no known use cases for including it, and it may not be possible for implementers acting as a single proxy to implement or guarantee that they can fulfill such a parameter. The question is: Do we want to remove the _id search parameter?
 - JM: Leave _id in the profile

- **PDQm_025**: How does FHIR expect to mitigate potential collisions of profile resources that are stated on a particular URL?
 - This is something that we should discuss with FHIR and incorporate the guidance in this document.

- **PDQm_026**: This profile is our first effort in profiling HL7 FHIR. We are anticipating two types of comments. The first regarding HL7 FHIR, the second regarding our profiling of HL7 FHIR.
 - Please note that comments regarding HL7 FHIR itself should be submitted to HL7 by registering for an HL7 gforge account and using the form at http://gforge.hl7.org/gf/project/fhir/tracker/?action=TrackerItemAdd&tracker_id=677
Comments to our profiling of FHIR should be submitted to us via IHE public comment.

- PDQm_027: The PDQ query parameters for dates could be better represented using DTM. The profile currently uses what FHIR calls the “interval” matching method (i.e., 2008 becomes “any time during 2008”). This issue should be discussed through FHIR.
 - Additionally, think that the currently profiled date matching mechanism described best fits the current query parameter styles of PDQv3 and PDQ

Closed Issues

- PDQm_002: Should Patient Visit Query be included in scope? Being a RESTful transaction, wouldn’t a visit be considered a separate resource? Would we want to include this in scope for this work item?
 - Exclude until asked to include. Perhaps as a different profile.

- PDQm_003: Are there alternate standards and technologies for mobile devices besides HL7 FHIR? We should discuss potential candidate standards (other than FHIR) prior to development of Vol. 2.
 - hDATA – HL7 Defined Standard currently in DSTU, perhaps specifying a PDQ HCP based on the PDQv3 models is an alternative? What are the pros/cons of this?
 - HL7v2 over HTTP – Now in ballot for formalization
 - See the Excel file which describes the analysis
 - Discussed in Vienna: Felt that FHIR does what we need for this profile

- PDQm_004: Regarding Pediatrics Option, I see that PDQv3 includes the same pediatric fields as PDQ even though the field names don’t match the standard. Should this be the same, or should the field names be adapted to support the concepts found in our chosen standard?
 - Volume 1 – Should be technology agnostic

- PDQm_005: Should the operation of querying for a patient and “getting” a patient be listed as separate transactions or would they simply be treated as the same transaction with different search criteria?
 - This should be placed as a separate interaction in the volume 2 text as it is the same transaction at the profile level.

- PDQm_006: Should we include use cases verbatim in the supplement? Should they be identical to the use cases listed in PDQ or should they be supplemented with mobile specific use cases?
 - Use cases have been incorporated into this Volume 1 text.
• PDQm_008: Should the patient demographics meta-data elements include the minimum set of demographics data for PDQ or should it include demographic data that is common to all PDQ Profiles? Currently it contains demographics fields common to all PDQ Profiles. Additionally where should this section “live” in Volume 1?
 o The demographics field table has been updated to only include minimum set of fields in PDQ and a note has been added below the table to indicate this.

• PDQm_001: How to do query (discussion for standards selection). Post a query document vs. query parameters?
 o GET parameters are a lower burden for implementers.

• PDQm_007: Place vanilla PDQ abstract data model in the text for this supplement.
 o The “value” column needs to be reworked and filled in, could use some ideas for this and/or suggestions.
 o Value has been removed and replaced with simply data elements and description as the value is often illustrated in the description.

• PDQm_010: Potentially add ability to query based on multiple birth indicator/order for pediatric demographics option. Volume 2 discussion with reflection in Volume 1.
 o Should the profile use multipleBirthBoolean or multipleBirthInteger?
 o Have chosen multipleBirthInteger as it can be used as an indicator field as well and mimics the multipleBirthOrder fields.

• PDQm_011: Cross profile considerations -> Move diagrams illustrating how PDQm may be implemented from the detailed proposal.
 o Done

• PDQm_012: Are we limiting the profile to JSON or will we be using the XML representation of FHIR?
 o JSON was initially the only format supported to reduce scope but XML wouldn’t be very difficult to include.
 o Perhaps leave as an open issue; infrastructure implementers wouldn’t be burdened by supporting both, and it is better to give PDC an option. Captured in Volume 2 text.

• PDQm_016: Regarding the search on birth date. There may be additional guidance coming from FHIR re: dates and date searches.
 o Keep it simple/compatible with PDQ/PDQv3 for now (interval only date searches).

• PDQm_018: Regarding careProvider on Patient resource: This is primarily intended for circle of care management, is this something we want to profile out of FHIR?
 o This is extra functionality that we don’t really ‘need ‘ in PDQm
Add a note stating that additional features may be leveraged that are simply not profiled. It is acceptable behavior for clients to ignore elements that are not in the PDQM Profile.

- PDQm_020: Is there any desire to include standardized URL schemes in the appendices, or guidance on how implementers should serve their resources when implementing multiple profiles using FHIR?
 - Continue to evolve this over time rather than trying to predict future requirements

- PDQm_009: What fields should be listed in the common PDQ query parameters table? Required only, Required and Optional (including not commonly used fields (internationally)), or all fields?
 - Rework this table to reflect the fields captured in PDQm, illustrate the delta / difference from other PDQ Profiles.
 - Table has been rewritten to only reflect those parameters in PDQm. Many key parameters are common between PDQ and v3

- PDQm_021: Should PDS support both JSON and XML or should PDS have the option to support either. PDC may support either.
 - If PDS has a choice then the server would need named options for XML / JSON.
 - Writing Timeline Note: For now have written verbiage indicating server supports both and client supports one. See what feedback is from public comment to modify this.

- PDQm_017: Security requirements: The PDC in a lightweight environment may be overburdened on implementing the requirements of secure node/application however the PDS (being more robust) should be able to generate, at minimum, audits and communicate via, at minimum, a secure channel (even if it can’t be mutually authenticated). I’ve put some verbiage to this effect the security considerations and just wanted opinions on this. Currently the Security Considerations section makes auditing optional on the PDC and mandatory on the PDS (even though not mirrored audits, IMO it is better than nothing).
 - Adding to this thought, I wasn’t sure what reliable mechanism there is for capturing the “source” of an audit. From my experience with audits from PDQv3 systems most source UserID just end up being the anonymous address and the NetworkAccessPointID is really the identifying piece of information.
 - The audit specification in Security Considerations of ITI-78 has been adapted from ITI-47 in this supplement. The only piece of data which might be difficult to ascertain is the source User ID (in PDQ this is MSH, and in PDQv3 this is the <wsa:replyTo/> element).
 - Resolution: Have made auditing optional on PDC and mandatory on PDS. Where wsa:replyTo was mentioned, the guidance has been set as not specialized.
• PDQm_023: RE: 3.78.4.2.3 : Should this text be normative or informative, currently worded as expected behavior (with shall language) i.e., should this behavior become part of testing behaviors? Do we want to keep this in the document?
 o JM: I think all of these are done or we have made a choice. So no need to leave these in Open. (exceptions have specific comment).

• PDQm_013: We should coordinate the specification of common attributes in the appendix. This would include things like:
 o Currently in Appendix Z

• PDQm_015: What is the appropriate behavior when a PDC wishes to perform a continuation (pagination) where the PDS does not support this option? This behavior is described in PDQ and PDQv3.
 o Nail down expected behaviors, esp. with continuation. Communicate that this is in the hands of the server. Perhaps better to over constrain and see what feedback is provided.
 o Has been described in expected behaviors

• PDQm_019: The Profile resource for PDQm is currently not specified in the document. The plan is to keep it external (similar to an XSD or WSDL). Should the profile resource for PDQm be included inline in this document or would it be better suited as an external resource (or both)?
 o Both – This is useful as an implementation artifact
 o Is this is another transaction that would be common to all IHE profiles which will be using Profiles, and Conformance resources? Perhaps just explain this in the appendices.
 o Resolution: Place in Appendix W

• PDQm_022: RE: Complex date matching, are there any use cases where interval date matching is not sufficient for the purposes of a PDQ query?
 o Keep it compatible with PDQ and if there are any additional use cases from PDQ we can include them.
General Introduction

Update the following Appendices to the General Introduction as indicated below. Note that these are not appendices to Volume 1.

Appendix A - Actor Summary Definitions

No change to Appendix A as no new actors.

Appendix B - Transaction Summary Definitions

Add the following transactions to the IHE Technical Frameworks General Introduction list of Transactions:

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Patient Demographics Query</td>
<td>Performs a query against a patient demographics supplier using HTTP, REST, and JSON/XML message encoding.</td>
</tr>
</tbody>
</table>

Glossary

Add the following glossary terms to the IHE Technical Frameworks General Introduction Glossary:

<table>
<thead>
<tr>
<th>Glossary Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHIR</td>
<td>Fast Health Interoperable Resources – A resource based draft standard currently being developed by HL7</td>
</tr>
<tr>
<td>JSON</td>
<td>JavaScript Object Notation – A textual representation of a serialized object from the JavaScript language.</td>
</tr>
<tr>
<td>REST</td>
<td>Representational State Transfer – An integration paradigm whereby data is exchanged with remote hosts by operating on HTTP resources using HTTP verbs such as GET, PUT, POST, etc.</td>
</tr>
</tbody>
</table>
Volume 1 – Profiles

Copyright Licenses

Add the following to the IHE Technical Frameworks General Introduction Copyright Section:

The FHIR License can be found at http://hl7.org/implement/standards/fhir/license.html.

Add the following section as 8.6

8.6 PDQ Cross Profile Considerations

There are two additional profiles: PDQv3 (Patient Demographics Query HL7v3) and PDQm (Patient Demographics Query for Mobile), which provide similar functionality to Patient Demographics Query. These profiles adapt the Patient Demographics Query transaction of the Patient Demographics Supplier and Patient Demographics Consumer actors for HL7v3 and HL7 FHIR. ITI TF-2x: Appendix M.4 provides additional details about these Patient Demographics Query profiles and their relationship with one another.

Add the following section as 24.6

24.6 PDQv3 Cross Profile Considerations

There are two additional profiles: PDQ (Patient Demographics Query) and PDQm (Patient Demographics Query for Mobile), which provide similar functionality to Patient Demographics Query. These profiles adapt the Patient Demographics Query transaction of the Patient Demographics Supplier and Patient Demographics Consumer actors for HL7v2 and HL7 FHIR. ITI TF-2x: Appendix M.4 provides additional details about these Patient Demographics Query profiles and their relationship with one another.

Add to new Section 38

38 PDQm – Patient Demographics Query for Mobile

The Patient Demographics for Mobile (PDQm) Profile provides a transaction for mobile and lightweight browser based applications to query a patient demographics supplier for a list of patients based on user-defined search criteria and retrieve a patient’s demographic information into the application.

38.1 PDQm Actors, Transactions, and Content Modules

Figure 38.1-1 shows the actors directly involved in the Patient Demographics Query for Mobile Profile and the relevant transactions between them. Note that the actors in this profile are the same as the actors defined in the PDQ Profile (ITI TF-1: 8.1).
Table 38.1-1 lists the transactions for each actor directly involved in the Patient Demographics Query for Mobile Profile. To claim compliance with this profile, an actor shall support all required transactions (labeled “R”) and may support the optional transactions (labeled “O”).

The transaction defined in this profile corresponds to one of the transactions used in the PDQ Profile (ITI TF-1: 8) and provides similar functionality. Note that there is no transaction which corresponds to the Patient Demographics and Visit Query.

Table 38.1-1: PDQm Profile - Actors and Transactions

<table>
<thead>
<tr>
<th>Actors</th>
<th>Transactions</th>
<th>Optionality</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Demographics Supplier</td>
<td>Mobile Patient Demographics Query</td>
<td>R</td>
<td>ITI TF-2c: 3.78</td>
</tr>
<tr>
<td>Patient Demographics Consumer</td>
<td>Mobile Patient Demographics Query</td>
<td>R</td>
<td>ITI TF-2c: 3.78</td>
</tr>
</tbody>
</table>

The transaction defined in this profile corresponds to one of the transactions used in the PDQ Profile (ITI TF-1: 8) and provides similar functionality. Note that there is no transaction which corresponds to the Patient Demographics and Visit Query.

38.1.1 Actor Descriptions and Actor Profile Requirements

No additional requirements.

38.2 PDQm Actor Options

Options that may be selected for each actor in this profile, if any, are listed in Table 38.2-1. Dependencies between options when applicable are specified in notes.
<table>
<thead>
<tr>
<th>Actor</th>
<th>Option Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Demographics Consumer</td>
<td>Continuation Option</td>
<td>ITI TF-1:38.2.1</td>
</tr>
<tr>
<td></td>
<td>Pediatric Demographics Option</td>
<td>ITI TF-1:38.2.2</td>
</tr>
<tr>
<td>Patient Demographics Supplier</td>
<td>Continuation Option</td>
<td>ITI TF-1:38.2.1</td>
</tr>
</tbody>
</table>

38.2.1 Continuation Option

The Continuation Option allows the Patient Demographics Consumer to get the full set of responses in several increments, as opposed to in one single response.

38.2.2 Pediatric Demographics

The experience of immunization registries and other public health population databases has shown that retrieving patient records for an individual person in environments with large proportions of pediatric records requires additional demographic data.

Information about the mother of the patient or a household telephone number is helpful in retrieving records in large population databases where data quality may be uneven.

Certain other demographics fields are important to include in the query response as they may be used by the Patient Demographics Consumer in verifying the identity of the patient; in particular, they aid in distinguishing records for twins, triplets, and so forth.

Pediatric Demographics makes use of the following six additional demographic fields to aid record matching in databases with many pediatric records.

<table>
<thead>
<tr>
<th>Field</th>
<th>Reason for Inclusion</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother’s Maiden Name</td>
<td>Any information about the mother is helpful in making a match</td>
<td>Helps creates true positive matches</td>
</tr>
<tr>
<td>Patient Home Telephone</td>
<td>A telecom helps match into the right household</td>
<td>Helps create true positive matches</td>
</tr>
<tr>
<td>Patient Multiple Birth Indicator</td>
<td>Indicates this person is a multiple – twin, triplet, etc.</td>
<td>Helps avoid false positive matches of multiples</td>
</tr>
<tr>
<td>Patient Birth Order</td>
<td>Distinguishes among those multiples</td>
<td>Helps avoid false positive matches of multiples</td>
</tr>
<tr>
<td>Last Update Date/Time, Last Update Facility</td>
<td>These fields, although not strictly demographic, can effectively substitute when multiple birth indicator and birth order are not collected. They indirectly provide visit information. Provider visits on the same day may likely indicate two children brought to a doctor together.</td>
<td>Helps avoid false positive matches of multiples</td>
</tr>
</tbody>
</table>
Patient Demographics Consumer Actors which support the Pediatric Demographics Option shall be able to provide the below listed Pediatric Demographics query parameter fields in the Patient Demographics Query transaction [ITI-78], and shall be able to receive and process any values returned for the fields identified as Pediatric Demographics.

Pediatric Demographics query parameter fields are:
- Mother’s Maiden Name
- Patient Home Telephone

Pediatric Demographics fields are defined as all of the following:
- Mother’s Maiden Name
- Patient Home Telephone
- Patient Multiple Birth Indicator
- Patient Birth Order
- Last Update Date/Time
- Last Update Facility

38.3 PDQm Required Actor Groupings

An actor from this profile (column 1) shall implement all of the required transactions and/or content modules in this profile in addition to all of the transactions required for the grouped actor (column 2).

Section 38.5 describes some optional groupings that may be of interest for security considerations and Section 38.6 describes some optional groupings in other related profiles.

<table>
<thead>
<tr>
<th>PDQm Actor</th>
<th>Actor to be grouped with</th>
<th>Reference</th>
<th>Content Bindings Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Demographics Supplier</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Demographics Consumer</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

38.4 PDQm Overview

38.4.1 Concepts

The PDQm Profile supports all of the use cases of PDQ while keeping the technology as lightweight as possible. Example uses include:
Mobile devices used by physicians (for example: a mobile app for electronic patient charts) which need to establish patient context by scanning a bracelet,

Web based EHR/EMR applications which wish to provide dynamic updates of patient demographic information such as a non-postback search, additional demographic detail, etc.

A document source/consumer wishing to perform an operation in the IHE Mobile access to Health Documents (MHD) Profile, where patient ID in the appropriate patient ID domain needs to be resolved by the source/consumer,

A health portal securely exposing demographics data to browser based plugins,

Medical devices which need to access patient demographic information.

Each of these specific use cases is generalized into two general use cases. The first is one where a system must obtain patient demographics to populate a user interface via a known demographic field (such as bracelet ID) or search parameters provided by a user. The second is as a prerequisite step whereby an application must obtain an identifier from another patient ID domain in order to complete another workflow.

This profile is applicable for use by any application which requires access to patient demographics where lightweight REST/JSON or REST/XML is a more suitable technology than traditional PDQ or PDQv3 Profiles.

38.4.2 Use Cases

38.4.2.1 Use Case #1: Patient Information Entering at Bedside

In this use case an admitted patient is assigned a bed, and may not be able to provide positive ID information. The nurse uses the PDQm Profile to establish patient context.

38.4.2.1.1 Patient Information Entering at Bedside Use Case Description

An admitted patient is assigned to a bed. The patient may or may not be able to provide positive ID information. The nurse needs to enter patient identity information into some bedside equipment to establish the relationship of the assigned bed to the patient. The equipment issues a query for a patient pick list to a patient demographics supplier that provides data for a patient pick list. Search criteria entered by the nurse might include one or more of the following:

- Partial or complete patient name (printed on the patient record or told by the patient)
- Patient ID (this may be obtained from printed barcode, a bed-side chart, etc.)
- Partial ID entry or scan.
- Date of birth / age range

The system returns a list of patients showing Patient ID, full name, age, sex and displays the list to the nurse. The nurse then selects the appropriate record to enter the patient identity information into the bedside equipment application.
38.4.2.2 Use Case #2: Patient Identity Information Entering in Physician Offices

In this use case a patient visits a physician for the first time. The physician system will use the PDQm Profile to import demographics information into the local application.

38.4.2.2.1 Patient Identity Information Entering in Physician Offices Use Case Description

A patient visits a physician office for the first time. The nurse needs to register the patient; in doing so, it is desired to record the patient’s demographic data in the practice management information system (PMIS). The physician office is connected to a hospital enterprise’s central patient registry. The nurse issues a patient query request to the central patient registry acting as a Patient Demographics Supplier, with some basic patient demographics data as search criteria. In the returned patient list, she picks an appropriate record for the patient, including the hospital’s Patient ID, to enter into the PMIS. (Note the PMIS uses a different Patient ID domain than that of the central patient registry.)

38.4.2.3 Use Case #3: Patient Demographics Query in an Enterprise with Multiple Patient ID Domains

In this use case a lab system obtains identities from multiple Patient ID domains for the purpose of reporting results.

38.4.2.3.1 Patient Demographics Query in an Enterprise with Multiple Patient ID Domains Use Case Description

A lab technician enters some basic demographics data (e.g., patient name) into a lab application to query a patient demographics supplier to identify a patient for his lab exams. As the application also needs the patient identifier in another Patient ID Domain in the enterprise for results delivery, the application is configured to query for Patient IDs from other domains in the query response.

38.4.3 Basic Process Flow in Patient Demographics Query for Mobile Profile

![Figure 38.4.3-1: Basic Process Flow in PDQm Profile](image)

Figure 38.4.3-1: Basic Process Flow in PDQm Profile
38.5 PDQm Security Considerations

The challenges of security and privacy controls within a mobile environment are unique, simply because the devices are harder to physically control. In other uses of the HTTP/REST pattern, applications are accessing far less sensitive information than patient demographics. The PDQm Profile provides access to the demographics managed in healthcare. These factors present a unique and difficult challenge for the security model. It is recommended that application developers utilize a Risk Assessment in the design of the applications, and that the operational environment utilize a Risk Assessment in the design and deployment of the operational environment.

There are many reasonable methods of security for interoperability transactions which can be implemented without modifying the characteristics of the PDQm Profile transactions. The use of TLS is encouraged, specifically the use of the ATNA Profile (see ITI TF-1:9).

User authentication on mobile devices and browsers is typically handled by more lightweight authentication schemes such as HTTP Authentication, OAuth, or OpenID Connect. IHE has a set of profiles for user authentication including: Enterprise User Authentication (EUA) on HTTP-based devices, with bridging to Cross-Enterprise User Assertion (XUA) for the backend, and Internet User Authentication (IUA) for REST-based authentication. In all of these cases, the network communication security, and user authentication are layered in the HTTP transport layer and do not modify the interoperability characteristics defined in the PDQm Profile.

PDQm mandates the use of the Security Audit logging (ATNA) Profile for Patient Demographics Suppliers. Support for ATNA-based audit logging on mobile devices and lightweight browser applications may be beyond the ability of the constrained environment. This would mean that the operational environment must choose how to mitigate the risk of relying only on the service side audit logging. It is recommended that Patient Demographics Consumer and Patient Demographics Supplier Actors implement the Internet User Authentication (IUA) Profile, incorporating the subject of the IUA token in audit messages.

The Resource URL pattern defined in this profile means many requests will include Patient ID and/or additional demographics parameters for query. The advantage of this pattern is ease of implementation and clear distinction of a patient’s identity. The URL pattern does present a risk when using typical web server audit logging of URL requests and browser history. In both of these cases the URL with the Patient ID and/or demographic query parameters is clearly visible. These risks need to be mitigated in system or operational design.

38.6 PDQm Cross Profile Considerations

When the Patient Demographics Supplier Actor is grouped with actors in other IHE profiles that perform patient information reconciliation activities (e.g., the ADT Actor in the IHE Radiology PIR Profile), the Patient Demographics Supplier Actor may use the updated information to respond to PDQm Queries. In addition the Patient Demographics Query for Mobile Profile may play an integral workflow role in conjunction with other IHE profiles.

Those systems that manage patient demographics could implement the Patient Demographics Supplier Actor in all three profiles: PDQ, PDQv3, and PDQm. In this way the Patient
Demographics Consumer can choose the technology stack that best fits. ITI TF-2x: Appendix M.4 provides additional details about Patient Demographics Query profiles and their relationship with one another.

The Patient Demographics Supplier Actor may act as a proxy to an existing PDQ or PDQv3 environment as shown in figures 38.6-1 and 38.6-2.

Figure 38.6-1: Implementing PDQm as a gateway
Figure 38.6-2: Sample PDQm gateway process flow
3.78 Mobile Patient Demographics Query [ITI-78]

This section corresponds to Transaction ITI-78 of the IHE IT Infrastructure Technical Framework. Transaction ITI-78 is used by the Patient Demographics Consumer and Patient Demographics Supplier Actors.

3.78.1 Scope

This transaction is used by the Patient Demographics Consumer Actor to solicit information about patients whose demographics data match data provided in the query parameters on the request message. The request is received by the Patient Demographics Supplier Actor. The Patient Demographics Supplier Actor processes the request and returns a response in the form of demographics information for the matching patients.

3.78.2 Actor Roles

<table>
<thead>
<tr>
<th>Actor: Patient Demographics Consumer</th>
<th>Role: Requests a list of patients matching the supplied set of demographics criteria (example: ID or Name) from the Patient Demographics Supplier Actor. The Patient Demographics Consumer populates its attributes with demographic information received from the Patient Demographics Supplier Actor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor: Patient Demographics Supplier</td>
<td>Role: Returns demographic information for all patients matching the demographics criteria provided by the Patient Demographics Consumer.</td>
</tr>
</tbody>
</table>

Figure 3.78.2-1: Use Case Diagram

Table 3.78.2-1: Actor Roles
3.78.3 Referenced Standards

HL7: *Fast Health Interoperability Resources (FHIR) DSTU v0.80*
- 1.12.5.1 – XML Representation
- 1.12.5.2 – JSON Representation
- 2.1 – RESTful API

RFC 2616: IETF Hypertext Transfer Protocol – HTTP/1.1
RFC 4287: The Atom Syndication Format
RFC 4627: The application/json Media Type for JavaScript Object Notation
RFC 5005: Feed Paging and Archiving

RFC 3968: Uniform Resource Identifier (URI) Generic Syntax
OpenSearch Relevance 1.0 Draft 1

3.78.4 Interaction Diagram

3.78.4.1 Query Patient Resource message

This message represents an HTTP GET parameterized query from the Patient Demographics Consumer to the Patient Demographics Supplier.
3.78.4.1.1 Trigger Events

When a Patient Demographics Consumer needs to select a patient based on demographic information about patients whose information matches a minimal set of known data, it issues a Query Patient Resource.

3.78.4.1.2 Message Semantics

The Query Patient Resource is conducted by the Patient Demographics Consumer by executing an HTTP GET against the Patient Demographics Supplier’s Patient Resource URL. The search target is formatted as:

http://<authority>/<path>/Patient?<query>

This URL is configurable by the Patient Demographics Supplier and is subject to the following constraints.

- The <authority> shall be represented as a host (either DNS name or IP address) followed optionally by a port.
- The Patient Demographic Supplier may use the <path> to segregate its implementation of the actor from other REST-based services.
- The <path>, if present, represents the path from which all resources related to a Patient Demographics Supplier are located (Conformance, Profile, and Patient resources) and shall not contain a '?'.
- The <query> represents a series of encoded name-value pairs representing the filter for the query specified in Section 3.78.4.1.2.1, as well as control parameters to modify the behavior of the Patient Demographics Supplier such as response format, or pagination.

More specifically, using the definitions from RFC 3986, <authority> shall match the production for authority, <path> shall match the production for path as specified in Figure ITI TF-2c: 3.78.4.1.2-1.
authority = host ["":"" port]
host = IP-literal / IPv4address / reg-name
IP-literal = "[" (IPv6address / IPvFuture) "]"
IPvFuture = "v" 1*HEXDIG "." 1* (unreserved / sub-delims / ":")
IPv6address = 6(h16 ":") ls32
/ "::" 5(h16 ":") ls32
/ [h16] "::" 4(h16 ":") ls32
/ [*1(h16 ":") h16] "::" 3(h16 "":"") ls32
/ [*2(h16 ":") h16] "::" 2(h16 "":"") ls32
/ [*3(h16 ":") h16] "::" h16 "":"" ls32
/ [*4(h16 ":") h16] "::" ls32
/ [*5(h16 ":") h16] "::" h16
/ [*6(h16 ":") h16] "::"

ls32 = (h16 "":"" h16) / IPv4address

; least-significant 32 bits of address
h16 = 1*4HEXDIG
; 16 bits of address represented in hexadecimal
IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet
dec-octet = DIGIT ; 0-9
/ %x31-39 DIGIT ; 10-99
/ "1" 2DIGIT ; 100-199
/ "2" %x30-34 DIGIT ; 200-249
/ "25" %x30-35 ; 250-255
reg-name = *(unreserved / pct-encoded / sub-delims)
port = *DIGIT
path = path-abempty ; begins with "/" or is empty
/ path-absolute ; begins with "/" but not "/"/
/ path-noscheme ; begins with a non-colon segment
/ path-rootless ; begins with a segment
/ path-empty ; zero characters
path-abempty = *("/" segment)
path-absolute = "/" [segment-nz *("/" segment)]
path-noscheme = segment-nz-nc *("/" segment)
path-rootless = segment-nz-nc *("/" segment)
path-empty = 0<pchar>
segment = *pchar
segment-nz = 1*pchar
segment-nz-nc = 1* (unreserved / pct-encoded / sub-delims / ":")
/ non-zero-length segment without any colon "":""
pchar = unreserved / pct-encoded / sub-delims / ":" / ":"
query = *(pchar / "/" / ":")

Figure 3.78.4.1.2-1: Production for PDS URL

Note: The use of "http" or "https" in URL does not override requirements to use TLS for security purposes. Servers will usually support TLS even when the URL specifies "http".

3.78.4.1.2.1 Query Search Parameters

The Patient Demographics Consumer may supply and the Patient Demographics Supplier shall be capable of processing all query parameters listed below. All query parameter values shall be
appropriately encoded per RFC 3986 “percent” encoding rules. Note that percent encoding does restrict the characterset to a subset of ASCII characters which is used for encoding all other characters used in the URL.

Patient Demographics Supplier Actors may choose to support additional query parameters beyond the subset listed below. Such parameters are considered out of scope for this transaction.

_id Search Parameter
This parameter of type token, when supplied, represents the resource identifier for the Patient Resource being queried.

identifier Search Parameter
This repeating parameter of type token, when supplied, specifies an identifier associated with the patient whose information is being queried (e.g., a local identifier, account identifier, etc.). If multiple instances of this parameter are provided in the query, the query represents a logical AND condition (i.e., all of the associated identifiers must match). For example, a query searching for patients having identifier145 assigned by authority “1.2.3.4” and SSN 123456789 would be represented as:

?identifier=urn:oid:1.2.3.4|145&identifier=urn:oid:2.16.840.1.113883.4.1|123456789

If no system portion of the identifier parameter is specified then the matching shall be performed on any identifier regardless of issuing system. The identifier specified in this parameter is expressed using the token search parameter type. Please see ITI TF-2x: Appendix Z.2 for use of the token data type for patient identifiers.

family and given Search Parameters
These parameters of type string, when supplied, specify the name of the person whose information is being queried. For this parameter the Patient Demographics Consumer may use either family name, given name or a combination of both names to filter by family, given or family and given names respectively.

Matching on these parameters is performed on a single name. Repetitions of each of the family or given parameters are interpreted to mean multiple parts of the same name. For example, a query for John Jacob Jingleheimer Schmidt would be represented as:

?family=Jingleheimer&family=Schmidt&given=John&given=Jacob

The specific mechanics of name matching such as phonetic matches, synonyms (i.e., John matches Johnny) or partial name matches are not specified here and may be configured to match site specific rules surrounding partial name matching.

birthdate Search Parameter
This parameter of type date, when supplied, specifies the birth date and time of the person whose information is being queried. This parameter can convey an exact moment (e.g., January 1, 1960 @ 03:00:00 EST), or an approximate date (e.g., January 1960).
To request approximate matches, the Patient Demographics Consumer shall use the interval mechanism described in HL7 FHIR, to indicate a date of birth lies within the range specified by the parameter. Table 3.78.4.1.2.1-1 provides examples of this interval mechanism.

<table>
<thead>
<tr>
<th>birthdate Parameter</th>
<th>Filter Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Born anytime in 1960</td>
</tr>
<tr>
<td>1960-01</td>
<td>Born during the month of January 1960</td>
</tr>
<tr>
<td>1960-01-01</td>
<td>Born at any time on January 1, 1960</td>
</tr>
<tr>
<td>1960-01-01T03:00:00</td>
<td>Born at exactly 3:00 AM on January 1, 1960</td>
</tr>
</tbody>
</table>

address Search Parameter

This parameter of type `string`, when supplied, specifies one or more address parts associated with the person whose information is being queried. As with any parameter of type `string` the filter is case-insensitive and may represent a partial match.

gender Search Parameter

This parameter of type `token`, when supplied, specifies the administrative gender of the person whose information is being queried. For this parameter item, a single administrative gender code from value set http://hl7.org/fhir/vs/administrative-gender shall be specified as the only value of the token.

3.78.4.1.2.2 Pediatric Demographics Query Search Parameters

Patient Demographics Consumers supporting the Pediatric Demographics Option shall be able to produce all query parameters listed.

mothersMaidenName.given / mothersMaidenName.family Search Parameter

These parameters of type `string`, when supplied, specify the name of a patient’s mother’s maiden name. The semantics of these parameters are identical to those listed in ITI TF-2c: 3.78.4.1.2.1.

telecom Search Parameter

This parameter of type `string`, when supplied, specifies the telecommunications address for the person whose information is being queried. The telecom value shall match the telecommunications address’ value irrespective of its intended use.

multipleBirthInteger Search Parameter

This parameter of type `integer`, when supplied, filters results on the order of birth if the birth was part of a multiple.
3.78.4.1.2.3 Parameter Modifiers

Patient Demographics Suppliers shall support the “:exact” parameter modifier on all query parameters of type string. When supplied by the Patient Demographics Consumer, the “:exact” parameter modifier instructs the Patient Demographics Supplier that exact matching should be performed.

The Patient Demographics Consumer should not use and Patient Demographics Supplier may ignore any additional parameter modifiers listed in the FHIR standard, which are considered out of scope in the context of this transaction.

3.78.4.1.2.4 Populating Which Domains are Returned

The Patient Demographics Consumer may constrain the domains from which patient identifiers are returned from the Patient Demographics Supplier in the resulting bundle. The Patient Demographics Consumer shall convey this by specifying the patient identity domains in the namespace component of repeating identifier parameters using this format:

\&identifier=<patient ID domain>|

For example, a Patient Demographics Consumer wishing to filter for patients with a last name of SMITH having identifiers from an identity domain with OID 1.2.3.4.5 would convey this search as:

?family=SMITH&identifier=urn:oid:1.2.3.4.5|

The Patient Demographics Consumer shall populate the patient identity domain portion of the token with values described in ITI TF-2x: Appendix E.3.

3.78.4.1.2.5 Populating Expected Response Format

The FHIR standard provides encodings for responses as either XML or JSON. Patient Demographics Supplier Actors shall support both message encodings, whilst Patient Demographics Consumer Actors shall support one and may optionally support both.

The Patient Demographics Consumer Actor shall indicate the desired response format via the _format query parameter.

Patient Demographics Consumers shall provide a _format parameter carrying at least one of the values indicated in Table 3.78.4.1.2.5-1. Multiple values in the _format parameter indicate the Patient Demographics Consumer is capable of processing responses in either response encoding.

Table 3.78.4.1.2.5-1: Desired response encoding

<table>
<thead>
<tr>
<th>Response Encoding</th>
<th>_format Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JSON</td>
<td>_format=json</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>_format=application/json+fhir</td>
</tr>
</tbody>
</table>
Response Encoding

<table>
<thead>
<tr>
<th>Response Encoding</th>
<th>_format Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML</td>
<td>_format=xml</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>_format=application/xml+fhir</td>
</tr>
</tbody>
</table>

3.78.4.1.2.6 Incremental Queries

Patient Demographics Consumers implementing the Continuation Option shall leverage the FHIR Resource Bundle paging mechanism to retrieve incremental results from the Patient Demographics Supplier using the control parameters described in this section.

The paging mechanism utilized by this transaction may be stateless; therefore, Patient Demographics Consumers are advised that results may change reflecting more recent matches between paging requests.

count Parameter

The `count` parameter controls the number of results which shall be contained in the resulting bundle.

page Parameter

The `page` parameter represents a number which controls the current subset of results within the complete result set which should be returned. Used with the `count` parameter this represents the offset and results to be returned in a response message. The base of this number is to be determined by the Patient Demographics Supplier Actor.

3.78.4.1.3 Expected Actions

The Patient Demographics Supplier shall return demographic records that reflect the match to all of the search criteria provided by the Patient Demographics Consumer. The Patient Demographics Supplier shall respond with a Query Patient Resource Response synchronously (i.e., on the same connection as was used to initiate the request).

The handling of phonetic issues, alternate spellings, upper and lower case, partial matching and accented characters, etc. if deemed appropriate shall be supported by the Patient Demographics Supplier rather than by the Patient Demographics Consumer. At minimum, the Patient Demographics Supplier shall return all exact matches to the query parameters sent by the Patient Demographics Consumer; IHE does not further specify matching requirements. If the Patient Demographics Supplier is unable to perform, case insensitive, partial matches, it shall indicate this in its Conformance Resource (see ITI TF-2x: Appendix Z.4).

The information provided by the Patient Demographics Supplier to the Patient Demographics Consumer is a list of matching patients from the Patient Demographics Supplier’s information source. The mechanics of the matching algorithms used are internal to the Patient Demographics Supplier Actor and are outside the scope of this framework.
The Patient Demographics Supplier shall support at least one patient identifier domain and may support multiple identifier domains. Section 3.78.4.1.2.4 describes how the Patient Demographics Consumer may filter results based on identifiers from one or more patient identifier domains. Query responses may return patient identifiers from 1 or multiple patient identifier domains.

If the Patient Demographics Consumer supplied a query parameter, or used a query parameter modifier which the Patient Demographics Supplier is not capable of utilizing, then the Patient Demographics Supplier shall respond with an HTTP 400 status code and an OperationOutcome resource indicating the parameters in error.

The Patient Demographics Supplier Actor shall respond to the query request as described by the following cases with a Query Patient Resource Response message described in Section 3.78.4.2, and shall behave according to the cases listed below:

Case 1: The Patient Demographics Supplier finds in its information source, at least one patient record matching the criteria sent as HTTP query parameters. No patient identifier domains are requested via the mechanism specified as specified in ITI TF-2c:3.78.4.1.2.4.

HTTP 200 (OK) is returned as the HTTP status code.

A Resource Bundle is returned representing the result set. The Patient Demographics Supplier populates the totalResults property of the bundle with the total number of matching results. One entry is returned from the Patient Demographics Supplier for each patient record found. If the Patient Demographics Supplier returns data for multiple patients, it shall return these data in successive entries in the bundle.

Within each entry, the Patient Demographics Supplier shall provide a link which may be used by the Patient Demographics Consumer to perform the Retrieve Patient Resource operation. Each entry shall contain content with one Patient Resource. If the Patient Resource’s identifier property contains one or more identifiers from the Patient ID Domains known by the Patient Demographics Supplier, then these shall be represented within one Patient Resource entry.

If an incremental number of records were specified via the count query parameter, and the number of records to be sent exceeds that count, the Patient Demographics Supplier returns only the incremental number of records. If the Patient Demographics Supplier supports the Continuation Option, it will correctly append links in the bundle which will allow the Patient Demographics Consumer to retrieve the next, and previous (if applicable) set of results.

If the Patient Demographics Supplier does not support the Continuation Option, in addition to returning only up to the incremental number of records request, it shall not include the next/previous navigation links.

The Patient Demographics Consumer may subsequently send another query with count and page number parameters to the Patient Demographics Supplier to request another window of results. If the Patient Demographics Supplier does not support the Continuation Option it shall respond with 400 as the HTTP status code and an OperationOutcome Resource indicating continuation is not supported.
Case 2: The Patient Demographics Supplier finds at least one patient record matching the criteria sent in the query parameters. One or more patient identifier domains are requested via the mechanism specified in ITI TF-2c:3.78.4.1.2.4, and Patient Demographics Supplier recognizes all domains.

HTTP 200 (Ok) is returned as the HTTP status code.

The Patient Demographics Supplier performs its matching and returns a bundle as described in Case 1. The Patient Demographics Supplier eliminates identifiers from the result set which do not exist in the list specified per ITI TF-2c:3.78.4.1.2.4 (domains to be returned). If all entries in the list of patient identifiers are eliminated, which would leave the patient identifiers list empty, then the entry shall not be present in the response bundle at all.

Case 3: The Patient Demographics Supplier fails to find in its information source, any patient record matching the criteria sent as HTTP query parameters.

HTTP 200 (OK) is returned as the HTTP status code.

A Resource Bundle is returned representing the zero result set. The Patient Demographics Supplier populates the `totalResults` with a value of 0 indicating no results were found. No `entry` attributes are provided in the result.

Case 4: The Patient Demographics Supplier Actor does not recognize one or more of the domains specified per ITI TF-2c:3.78.4.1.2.4.

HTTP 400 (Bad Request) is returned as the HTTP status code.

An OperationOutcome Resource is returned indicating that the patient identity domain is not recognized in an issue having:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>severity</td>
<td>Error</td>
</tr>
<tr>
<td>type</td>
<td>{http://hl7.org/fhir/vs/issue-type}value</td>
</tr>
</tbody>
</table>

The OperationOutcome Resource shall indicate the query parameter used and the domain in error within the `details` attribute. For example: A search for “?identifier=urn:oid:1.2.3.4.5.6|” would yield:
Case 5: The Patient Demographics Supplier Actor is not capable of producing a response in the requested format specified by _format parameter (specified in ITI TF-2c:3.78.4.1.2.5).

HTTP 400 (Bad Request) is returned as the HTTP status code.

An OperationOutcome Resource is returned indicating that the requested response format is not supported in an issue having:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>severity</td>
<td>Error</td>
</tr>
<tr>
<td>type</td>
<td>{http://hl7.org/fhir/issue-type}not-supported</td>
</tr>
</tbody>
</table>

The Patient Demographics Supplier may be capable of servicing requests for response formats not listed in ITI TF-2c: 3.78.4.1.2.5, but shall, at minimum, be capable of producing XML and JSON encodings. If the Patient Demographics Consumer provided multiple values in the
The _format parameter, the Patient Demographics Supplier may choose any of the response formats for the encoding of the response message.

The Patient Demographics Supplier may return other HTTP status codes to represent specific error conditions. When HTTP error status codes are returned by the Patient Demographics Supplier, they shall conform to the HTTP standard RFC 2616. Their use is not further constrained or specified by this transaction.

3.78.4.2 Query Patient Resource Response message

3.78.4.2.1 Trigger Events

The Patient Demographics Supplier found patient demographics matching the query parameters specified by the Patient Demographics Consumer as a result of a Query Patient Resource Request.

3.78.4.2.2 Message Semantics

The Query Patient Resource Response is sent from the Patient Demographics Supplier Actor to the Patient Demographics Consumer Actor as a bundle of Patient resources. The “content-type” of the response will depend upon the requested response format indicated by the Patient Demographics Consumer Actor via the _format parameter.

Table 3.78.4.2.2-1 outlines the format of a response based on the values specified in the format parameter.

<table>
<thead>
<tr>
<th>_format Parameter</th>
<th>Content Type</th>
<th>Bundle Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>json or application/json+fhir</td>
<td>application/json+fhir; charset=UTF-8</td>
<td>FHIR JSON Bundle</td>
</tr>
<tr>
<td>xml or application/xml+fhir</td>
<td>application/atom+xml; charset=UTF-8</td>
<td>ATOM Feed (RFC 4287)</td>
</tr>
</tbody>
</table>

The Patient Demographics Supplier shall use a character encoding of UTF-8. Both XML and JSON encodings of the response shall adhere to the FHIR bundle constraints profiled in ITI TF-2x: Appendix Z.1.

3.78.4.2.2.1 Patient Resource Definition in the Context of Query Patient Resource Response

Below is the definition for the Patient Resource contained within the Query Patient Resource response message. The components of the Patient Resource with cardinality greater than 0 (as shown below) are required, and the detailed description of the message is provided here. All other attributes of the response are optional.
The purpose of the definition is to describe the data elements relevant for this transaction. It is a restriction of the Patient Resource found in chapter 5.1.2 of the FHIR standard. For the complete FHIR definition of this Resource please see ITI TF-2x: Appendix W.

The attributes of this definition are described in the following table.

<table>
<thead>
<tr>
<th>Resource Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>The primary record for a matching patient result in a Patient Demographics Supplier.</td>
</tr>
<tr>
<td>identifier [1..*]</td>
<td>An identifier that applies to this person as a patient. Identifiers from different Identity Domains shall be represented here. At least one patient identifier shall be present in this attribute. See ITI TF-2x: Appendix E.1 for details on populating the Identifier type.</td>
</tr>
<tr>
<td>name [1..*]</td>
<td>The name(s) associated with the individual. At least one name shall be represented here.</td>
</tr>
<tr>
<td>telecom [0..*]</td>
<td>A contact detail (e.g., a telephone number or email address) by which the individual may be contacted.</td>
</tr>
<tr>
<td>gender [0..1]</td>
<td>A value representing the gender (sex) of this person. Note: this attribute should not include terms related to clinical gender, rather this is the administrative gender of the patient.</td>
</tr>
<tr>
<td>birthdate [0..1]</td>
<td>The date / time when the patient was born.</td>
</tr>
</tbody>
</table>

Figure 3.78.4.2.2.1-1: Patient Resource definition
Resource Definition

<table>
<thead>
<tr>
<th>Resource Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deceasedDate [0..1] dateTime</td>
<td>Indicates the date that the patient died.</td>
</tr>
<tr>
<td>address [0..*] Address</td>
<td>Address(es) for the individual.</td>
</tr>
<tr>
<td>maritalStatus [0..1] CodeableConcept {http://hl7.org/fhir.vs.marital-status}</td>
<td>This field contains a patient’s most recent marital status (civil).</td>
</tr>
<tr>
<td>multipleBirthInteger [0..1] integer</td>
<td>Indicates the birth order when the patient is born as part of a multiple birth (e.g., twins).</td>
</tr>
<tr>
<td>photo [0..*] Attachment</td>
<td>Contains an image of the patient.</td>
</tr>
<tr>
<td>communication [0..*] CodeableConcept</td>
<td>Languages which may be used to communicate with the patient about their health.</td>
</tr>
<tr>
<td>careProvider [0..*] Resource[Organization</td>
<td>Practitioner]</td>
</tr>
<tr>
<td>managingOrganization [0..1] Resource[Organization]</td>
<td>Organization that is the custodian of the patient record.</td>
</tr>
<tr>
<td>active [0..1] Boolean</td>
<td>Indicates whether the patient record is currently in active use.</td>
</tr>
<tr>
<td>Link [0..*]</td>
<td>Links this patient record to another patient record. This may be used for conveying merged patient records.</td>
</tr>
<tr>
<td>other [1..1] Resource[Patient]</td>
<td>The other patient resource that the link refers to.</td>
</tr>
<tr>
<td>type [1..1] code {http://hl7.org/fhir/link-type}</td>
<td>Indicates the type of link between the patient resources.</td>
</tr>
<tr>
<td>Contact [0..*]</td>
<td>A contact party (e.g., parent, spouse, friend) for the patient.</td>
</tr>
<tr>
<td>relationship [0..*] CodeableConcept {http://hl7.org/fhir.vs.patient-contact-relationship}</td>
<td>Indicates the nature(s) of the relationship between the patient and the contact person.</td>
</tr>
<tr>
<td>name [0..1] HumanName</td>
<td>A name associated with this person.</td>
</tr>
<tr>
<td>telecom [0..*] Contact</td>
<td>Contact detail(s) for the person (e.g., telephone number or email address).</td>
</tr>
<tr>
<td>address [0..1] Address</td>
<td>Address for the contact person.</td>
</tr>
<tr>
<td>gender [0..1] CodeableConcept {http://hl7.org/fhir.vs/administrative-gender}</td>
<td>Gender of the contact person.</td>
</tr>
</tbody>
</table>

3.78.4.2.2.2 Mother’s Maiden Name

Patient Demographics Suppliers shall include the mother’s maiden name, if known, in an extension named mothersMaidenName. The URL of this extension shall point to the definition of the mothersMaidenName extension definition element in the Patient Demographics Supplier’s Profile resource (see ITI TF-2x: Appendix Z.4).
For example, a demographic result being returned from a Patient Demographics Supplier “pdqm-sample”, whose mother’s maiden name is Mary Smith is illustrated below:

```json
{
  "resourceType" : "Patient",
  ...
  "extension" : [ 
    {
      "url" : "http://pdqm-sample:8080/ITI-78/Profile/pdqm#mothersMaidenName",
      "valueHumanName" : {
        "family" : [ "Smith" ],
        "given" : [ "Mary" ]
      }
    }
  ]
}
```

Or in XML format as:

```xml
<Patient>
  ...
  <extension url="http://pdqm-sample:8080/ITI-78/Profile/pdqm#mothersMaidenName">
    <valueHumanName>
      <family value="Smith"/>
      <given value="Mary"/>
    </valueHumanName>
  </extension>
  ...
</Patient>
```

Additionally, the Patient Demographics Supplier shall indicate support for the mothersMaidenName within its Profile resource as illustrated below:
... "extensionDefn" : [

 {
 "code" : "mothersMaidenName",
 "contextType" : "resource",
 "context" : ["Patient"],
 "definition" : {
 "short" : "Patient's mother's maiden name",
 "formal" : "The name of the patient's mother",
 "min" : 0,
 "max" : 1,
 "type" : [
 {
 "code" : "HumanName"
 }
],
 "isModifier" : false
 }
 }
]

Or in XML format as:

...<extensionDefn>
 <code value="mothersMaidenName"/>
 <contextType value="resource"/>
 <context value="Patient"/>
 <definition>
 <short value="Patient's mother's maiden name"/>
 <formal value="The name of the patient's mother"/>
 <min value="0"/>
 <max value="1"/>
 <type>
 <code value="HumanName"/>
 </type>
 <isModifier value="false"/>
 </definition>
</extensionDefn>
...

3.78.4.2.3 Resource Bundling

Please see ITI TF-2x: Appendix Z.1 for details on the IHE guidelines for implementing FHIR bundles.

3.78.4.2.4 Incremental Response Processing - Paging of Resource Bundle

A Patient Demographics Supplier supporting the Continuation Option shall be capable of accepting and processing queries containing the count and page parameters to return
successive query responses of partial lists of records. The Patient Demographics Supplier shall represent these incremental responses as specified in ITI TF-2x: Appendix Z.1.1.

3.78.4.2.2.5 Quality of Match

The Patient Demographics Supplier Actor may convey the quality of each match based on strength of the particular result to the supplied query parameters. The mechanism for determining the confidence of match is considered a product specific feature, and is not specified in this technical framework.

If the Patient Demographics Supplier Actor wishes to convey the quality of match, it shall represent the confidence of a particular match within the bundle as a score attribute carrying a decimal number between 0 and 1, inclusive having no more than 9 significant digits. The score attribute shall be contained in the entry attribute of the bundle.

In JSON this is carried via “score”:

```
"entry" : [{
    "title" : "Smith, John",
    "link" : [{
        "rel" : "self",
        "href" : "http://example.com/pdqm/patient/1/_history/1"
    }],
    "id" : "http://example.com/pdqm/patient/1",
    "score" : 0.8
...
}
```

In the XML format bundles, score is represented as an OpenSearch element in the namespace “http://a9.com/-/opensearch/extensions/relevance/1.0/”, for example:

```
<entry>
  <title>Smith, John</title>
  <link rel="self" href="http://example.com/pdqm/patient/1/_history/1"/>
  <id>http://example.com/pdqm/patient/1</id>
  <os:score xmlns:os="http://a9.com/-/opensearch/extensions/relevance/1.0">0.8</os:score>
</entry>
```

3.78.4.2.3 Expected Actions

The constraints specified in the ITI TF-2c:3.78.4.2.2 represent the minimum set of demographics information that must be implemented by a Patient Demographics Supplier. This does not prevent the Patient Demographics Supplier from sending additional FHIR attributes in a response; such as extensions, text, etc. The Patient Demographics Consumer shall ignore additional attributes and extensions if not understood.
The consumer shall process the response in some manner specific to its application function (for example: displaying on a user interface). This application behavior is not specified by IHE.

3.78.4.2.4 Profile Resource

Patient Demographics Suppliers implementing [ITI-78] shall provide a Profile Resource as described in ITI TF-2x: Appendix Z.3 indicating all query parameters and data elements implemented by the Patient Demographics Supplier. An example of a Profile Resource for ITI-78 is located in ITI TF-2x: Appendix W.

3.78.4.2.5 Conformance Resource

Patient Demographics Suppliers implementing [ITI-78] shall provide a Conformance Resource as described in ITI TF-2x: Appendix Z.4 indicating the query operation for the Patient Resource has been implemented and shall include all query parameters implemented for the Patient Resource. An example of a Conformance Resource for ITI-78 is located in ITI TF-2x: Appendix W.

3.78.4.3 Retrieve Patient Resource message

This message represents an HTTP GET from the Patient Demographics Consumer to the Patient Demographics Supplier and provides a mechanism for retrieving a single Patient Resource with a known resource identifier.

3.78.4.3.1 Trigger Events

When the Patient Demographics Consumer possesses a Patient Resource’s identifier (either through query, database lookup, or other mechanism) for which it requires additional or new information, it issues a Retrieve Patient Resource operation.

3.78.4.3.2 Message Semantics

The Retrieve Patient Resource is conducted by executing an HTTP GET against the Patient Demographics supplier’s Patient Resource URL, providing the resource id of the patient being retrieved. The target is formatted as:

\[http://<authority>/<path>/Patient/<resourceId>?_format=[json|xml] \]

The Patient Demographics Supplier shall respond to this query by sending a single Patient Resource instance. The specification for <authority> is identified in ITI TF-2c:3.78.4.1.2.

The resource identifier included in the request always represents the unique identifier for the Resource within the scope of the url. For example, while http://example1.org/ihe/Patient/1 and http://example2.com/ihe/Patient/1 both contain the same “resource id” they reference two different resource instances.

The values permitted for the _format parameter are identified in ITI TF-2c: 3.78.4.1.2.4.

Note: The use of "http" or "https" in URL does not override requirements to use TLS for security purposes. Servers will usually support TLS even when the URL specifies "http"
3.78.4.3.3 Expected Actions

The Patient Demographics Supplier shall retrieve the demographic record indicated by the Resource identifier on the HTTP GET supplied by the Patient Demographics Consumer. The Patient Demographics Supplier shall respond to the retrieve request as described by the following cases:

Case 1: The Patient Demographics Supplier finds in its information source the patient demographics record matching the resourceId sent in the HTTP request.

HTTP 200 (OK) is returned as the HTTP status code.

A Patient Resource is returned representing the result.

Case 2: The Patient Demographics Supplier fails to find in its information source the patient demographics record matching the resourceId sent in the HTTP request.

HTTP 404 (Not Found) is returned as the HTTP status code.

An OperationOutcome Resource is returned indicating that the Patient Resource could not be found:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>severity</td>
<td>error</td>
</tr>
<tr>
<td>type</td>
<td>{http://hl7.org/fhir/vs/issue-type}not-found</td>
</tr>
</tbody>
</table>

The OperationOutcome shall indicate the resource id used by the Patient Demographics Consumer which could not be located. For example: A not-found for http://example.com/pdqm/Patient/2 would yield:

```json
{
    "issue": [
        {
            "severity": "error",
            "type": {
                "system": "http://hl7.org/fhir/vs/issue-type",
                "code": "not-found",
                "display": "Not Found"
            },
            "details": [
                "Patient resource '2' not found"
            ]
        }
    ]
}
```
The Patient Demographics Supplier may return other HTTP status codes to represent specific error conditions. When HTTP error status codes are returned by the Patient Demographics Supplier, they shall conform to the HTTP standard RFC 2616. Their use is not further constrained or specified by this transaction.

3.78.4.4 Retrieve Patient Resource Response message

The Patient Demographics Supplier’s response to a successful Retrieve Patient Resource message shall be an HTTP Status code 200 with a FHIR Patient Resource, or an appropriate error code as defined in ITI TF-2c: 3.78.4.2.2.1.

3.78.4.4.1 Trigger Events

The Patient Demographics Supplier found patient demographic record matching the Resource identifier specified by the Patient Demographics Consumer.

3.78.4.4.2 Message Semantics

The Retrieve Patient Resource response is sent from the Patient Demographics Supplier Actor to the Patient Demographics Consumer Actor as a single Patient Resource encoded per Table 3.78.4.4.2-1.

<table>
<thead>
<tr>
<th>_format Parameter</th>
<th>Content Type</th>
<th>Resource Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>json or application/json+fhir</td>
<td>application/json+fhir</td>
<td>JSON (per FHIR 1.12.5.2)</td>
</tr>
<tr>
<td>xml or application/xml+fhir</td>
<td>application/xml+fhir</td>
<td>XML (per FHIR 1.12.5.1)</td>
</tr>
</tbody>
</table>

The Patient Demographics Supplier shall use a character encoding of UTF-8. If the Patient Demographics Supplier is unable to produce a response in the requested format, it shall respond with an HTTP 400 error indicating that it was unable to fulfill the request. The Patient Demographics Supplier may be capable of servicing requests for response formats not listed, but shall, at minimum, be capable of producing XML and JSON encodings. If the Patient Demographics Consumer provided multiple values in the _format parameter, the Patient Demographics Supplier may choose any of the response formats for the encoding of the response message.

3.78.4.4.2.1 Patient Resource Definition in the Context of Retrieve Patient Resource Response

The Patient Resource definition in the context of a retrieve operation is identical to the constraints placed on the Patient Resource for a search (see ITI TF-2c: 3.78.4.2.2.1)
3.78.5 Security Considerations

See the general Security Consideration in ITI TF-1:38.5

3.78.5.1 Security Audit Considerations

The Security audit criteria are similar to those for the Patient Demographics Query [ITI-21] as this transaction discloses the same type of demographic information. The Mobile Patient Demographics Query is a Query Information event as defined in Table 3.20.6-1 (see ITI TF-2a:3.20.6). The Patient Demographics Supplier shall record audit events according to the following:

3.78.5.1.1 Patient Demographics Consumer audit message:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>EventID</td>
<td>M</td>
<td>EV(110112, DCM, “Query”)</td>
</tr>
<tr>
<td>EventActionCode</td>
<td>M</td>
<td>“E” (Execute)</td>
</tr>
<tr>
<td>EventDateTime</td>
<td>M</td>
<td>not specialized</td>
</tr>
<tr>
<td>EventTypeCode</td>
<td>M</td>
<td>EV(“ITI-78”, “IHE Transactions”, “Mobile Patient Demographics Query”)</td>
</tr>
</tbody>
</table>

Source (Patient Demographics Consumer) (1)

Human Requestor (0..n)

Destination (Patient Demographics Suppler) (1)

Audit Source (Patient Demographics Consumer) (1)

Patient (0..n)

Query Parameters(1)

Where:

User ID

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>M</td>
<td>not specialized</td>
</tr>
<tr>
<td>AlternativeUserID</td>
<td>M</td>
<td>The process ID as used within the local operating system logs.</td>
</tr>
<tr>
<td>UserName</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>UserIsRequestor</td>
<td>U</td>
<td>not specialized</td>
</tr>
</tbody>
</table>

RoleIDCode

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoleIDCode</td>
<td>M</td>
<td>EV(110153, DCM, “Source”)</td>
</tr>
</tbody>
</table>

NetworkAccessPointTypeCode

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetworkAccessPointTypeCode</td>
<td>M</td>
<td>“1” for machine (DNS) name, “2” for IP address</td>
</tr>
</tbody>
</table>

NetworkAccessPointID

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetworkAccessPointID</td>
<td>M</td>
<td>The machine name or IP address, as specified in RFC 3881.</td>
</tr>
</tbody>
</table>

Human Requestor (if known)

User ID

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>M</td>
<td>Identity of the human that initiated the transaction</td>
</tr>
<tr>
<td>AlternativeUserID</td>
<td>U</td>
<td>The process ID as used within the local operating system logs.</td>
</tr>
<tr>
<td>UserName</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>UserIsRequestor</td>
<td>M</td>
<td>“true”</td>
</tr>
</tbody>
</table>
Destination

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>M</td>
<td>HTTP endpoint of the request excluding query string.</td>
</tr>
<tr>
<td>AlternativeUserID</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>UserName</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>UserIsRequestor</td>
<td>M</td>
<td>“false”</td>
</tr>
<tr>
<td>RoleIDCode</td>
<td>M</td>
<td>EV(110152, DCM, “Destination”)</td>
</tr>
<tr>
<td>NetworkAccessPointTypeCode</td>
<td>M</td>
<td>“1” for machine (DNS) name, “2” for IP address, “5” for URI</td>
</tr>
<tr>
<td>NetworkAccessPointID</td>
<td>M</td>
<td>The HTTP endpoint of the request, the machine name or IP address, as specified in RFC 3881.</td>
</tr>
</tbody>
</table>

Audit Source

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuditSourceID</td>
<td>U</td>
<td>not specialized.</td>
</tr>
<tr>
<td>AuditEnterpriseSiteID</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>AuditSourceTypeCode</td>
<td>U</td>
<td>not specialized</td>
</tr>
</tbody>
</table>

Query Parameters

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>ParticipantObjectTypeCode</td>
<td>M</td>
<td>“2” (system object)</td>
</tr>
<tr>
<td>ParticipantObjectRoleCode</td>
<td>M</td>
<td>“24” (query)</td>
</tr>
<tr>
<td>ParticipantObjectDataLifeCycle</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>ParticipantObjectIDTypeCode</td>
<td>M</td>
<td>EV(“ITI-78”, “IHE Transactions”, “Mobile Patient Demographics Query”)</td>
</tr>
<tr>
<td>ParticipantObjectSensitivity</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>ParticipantObjectID</td>
<td>M</td>
<td>“MobilePatientDemographicsQuery”</td>
</tr>
<tr>
<td>ParticipantObjectName</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>ParticipantObjectQuery</td>
<td>M</td>
<td>Request query string</td>
</tr>
<tr>
<td>ParticipantObjectDetail</td>
<td>M</td>
<td>HTTP Request Headers contained in the query</td>
</tr>
</tbody>
</table>

3.78.5.1.2 Patient Demographics Supplier audit message:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Opt</th>
<th>Value Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EventID</td>
<td>M</td>
<td>EV(110112, DCM, “Query”)</td>
</tr>
</tbody>
</table>
Event Action Code
- EventActionCode: M “E” (Execute)

Event Date Time
- EventDateTime: M not specialized

Event Outcome Indicator
- EventOutcomeIndicator: M not specialized

Event Type Code
- EventOutcomeCode: M EV(“ITI-78”, “IHE Transactions”, “Mobile Patient Demographics Query”)

Source (Patient Demographics Consumer) (1)

Destination (Patient Demographics Supplier) (1)

Audit Source (Patient Demographics Supplier) (1)

Patient (0..n)

Query Parameters (1)

Where:

<table>
<thead>
<tr>
<th>Source</th>
<th>UserID</th>
<th>M</th>
<th>not specialized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AlternativeUserID</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td></td>
<td>UserName</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td></td>
<td>UserIsRequestor</td>
<td>M</td>
<td>“true”</td>
</tr>
<tr>
<td></td>
<td>RoleIDCode</td>
<td>M</td>
<td>EV(110152, DCM, “Destination”)</td>
</tr>
<tr>
<td></td>
<td>NetworkAccessPointTypeCode</td>
<td>M</td>
<td>“1” for machine (DNS) name, “2” for IP address</td>
</tr>
<tr>
<td></td>
<td>NetworkAccessPointID</td>
<td>M</td>
<td>The machine name or IP address, as specified in RFC 3881.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination</th>
<th>UserID</th>
<th>M</th>
<th>HTTP endpoint of the request excluding query string.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AlternativeUserID</td>
<td>M</td>
<td>The process ID as used within the local operating system in the local system logs.</td>
</tr>
<tr>
<td></td>
<td>UserName</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td></td>
<td>UserIsRequestor</td>
<td>M</td>
<td>“false”</td>
</tr>
<tr>
<td></td>
<td>RoleIDCode</td>
<td>M</td>
<td>EV(110152, DCM, “Destination”)</td>
</tr>
<tr>
<td></td>
<td>NetworkAccessPointTypeCode</td>
<td>M</td>
<td>“1” for machine (DNS) name, “2” for IP address, “5” for URI</td>
</tr>
<tr>
<td></td>
<td>NetworkAccessPointID</td>
<td>M</td>
<td>The HTTP endpoint of the request, the machine name or IP address, as specified in RFC 3881.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Audit Source</th>
<th>AuditSourceID</th>
<th>U</th>
<th>not specialized.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AuditEnterpriseSiteID</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td></td>
<td>AuditSourceTypeCode</td>
<td>U</td>
<td>not specialized</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Query Parameters</th>
<th>ParticipantObjectTypeCode</th>
<th>M</th>
<th>“2” (system object)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ParticipantObjectTypeRole</td>
<td>M</td>
<td>“24” (query)</td>
</tr>
<tr>
<td></td>
<td>ParticipantObjectDataLifeCycle</td>
<td>U</td>
<td>not specialized</td>
</tr>
<tr>
<td>ParticipantObjectIDTypeCode</td>
<td>M</td>
<td>EV(“ITI-78”, “IHE Transactions”, “Mobile Patient Demographics Query”)</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectSensitivity</td>
<td>U</td>
<td>not specialized</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectID</td>
<td>M</td>
<td>“MobilePatientDemographicsQuery”</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectName</td>
<td>U</td>
<td>not specialized</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectQuery</td>
<td>M</td>
<td>Request query string</td>
<td></td>
</tr>
<tr>
<td>ParticipantObjectDetail</td>
<td>M</td>
<td>HTTP Request Headers contained in the query (Accept)</td>
<td></td>
</tr>
</tbody>
</table>
Appendices

Add the following Appendix to the Volume 2 Appendices

Appendix Z – FHIR Implementation Material

HL7 FHIR has several overarching concepts which should be profiled consistently throughout any mobile/lightweight IHE transaction using FHIR. IHE profiles FHIR, like any other standard, in ways that narrow the standard for specific use-cases. IHE profiles are intended to be proper subsets of the standard and are not intended to be incompatible.

We discuss here how IHE profiles FHIR concepts such as Resource Bundles, Query Parameters, Conformance and Profile Resources, and Resource Reference URIs.

Z.1 Resource Bundles

Any operation which results in, or requires submission of a collection of resources is done via a Resource Bundle mechanism. A FHIR Bundle represents a collection of resources which are related in some way, for example: the result of a search operation, or a collection of historical versions of a particular resource.

Bundles are represented using either the RFC 4287 (Atom) feeds in XML, or a JSON representation of ATOM defined in 1.12.5.2.5 of the HL7 FHIR standard.

Z.1.1 Resource Bundles for Query Results

This section describes how IHE profiles the use of the Resource Bundles to express the results of a query. These requirements for the Resource Bundle are specified solely in the context of query responses.

- The Resource Bundle shall carry a link attribute with rel="self" and href equal to a resolvable URL which may be used by the consumer to re-perform the query.

- A Resource Bundle shall carry the totalResults attribute indicating the total number of results matching the search parameters provided.
 a. In the JSON bundle format totalResults shall appear as a property of the bundle,
 b. In the XML/ATOM format, totalResults shall appear as an element named totalResults in the OpenSearch namespace http://a9.com/-/spec/opensearch/1.1/

- Each entry within the Resource Bundle shall carry a link attribute with rel="self" and href equal to a resolvable URL which may be used by the consumer to retrieve the resource.

- Each entry within the Resource Bundle shall carry a content attribute with one conformant resource representing a single result of the query. If no content exists for the entry, the entry shall not be included in the bundle.
Z.1.1.1 Resource Bundle “self” Link

When a Resource Bundle is generated in response to a query, the actor shall convey the actual parameters used for the query as the self link on the returned bundle. For example, if a Patient Demographics Supplier Actor processed a search for “John Smith”, the “self” link within the bundle would be represented as:

```json
{
    "link" : [{
        "rel": "self",
    }],
    ...
}
```

Or in XML

```
...<link rel="self" href="http://example.com/pdqm/patient?family=Smith&given=John"/>
...```

Z.1.1.2 Resource Bundle Pagination

When pagination is supported, and a Resource Bundle represents a partial result set, the Resource Bundle shall include the following navigation links. The behavior specified within FHIR (see FHIR Section 2.1.19) leverages RFC 5005 (Feed Paging and Archiving). This section describes how IHE profiles the behavior of this paging mechanism.

- If the current bundle represents the first page of results, then the “previous” and “first” links may be excluded from the bundle’s list of links.
- If the current bundle represents the last page of results, then the “next” and “last” links may be excluded from the bundle’s list of links.
- The first, previous, next, and last links shall carry all parameters that were used to perform the query (see ITI TF-2x: Appendix Z.1.1)
- If the actor enforces a default count of results per page it shall append a count parameter to each of the first, previous, next, and last links indicating this default count.

For example: A response bundle containing the third page of result for a query which resulted in 100 matching demographics, would convey the following navigation links to the consumer:
Or, in an XML/ATOM encoded bundle:
Z.2 Query Parameters

FHIR specifies a series of query parameter types which may be used when querying for a particular resource on a server. The representation of these query parameters within the HTTP request URL are intended to support a broad set of use cases and in some cases the behavior is unclear.

In this section we discuss query parameters in the context of RESTful HTTP queries represented in the request URL within IHE profiles.

Z.2.1 Query Parameter Modifiers

Per HL7 FHIR specification, implementers shall make the support for query parameter modifiers known in their Conformance Resource (see ITI TF-2x: Appendix Z.4), and shall indicate the Resource for which the modifier is supported. For example, if a Patient Demographics Supplier Actor implementing the PDQm Profile supports the “:missing” modifier it would state support within the Patient Resource as:

```
"searchParam" : [
 ...
 {
 "name" : "gender:missing",
 "type" : "token"
 },
```

Or in an XML Conformance Resource as:
Z.2.2 Token Parameters

Query parameters of type `token` are intended to represent complex identifiers qualified by a namespace (see FHIR Section 2.2.2.5). This includes codes, identifiers, flags, etc. The token identifier is represented as an identifier and namespace. IHE places the following additional constraints on the behavior of matching parameters of type `token`:

- When the token is used to express a query parameter which filters on an attribute of type `Boolean` (such as active, the :missing modifier, etc.) only a code shall be present and shall have a value of true or false. For example: `?active=true`.

- When the token is used to express a query parameter which filters on an attribute of type `Code`, `CodeableConcept` or `Coding`, where the codification namespace is stated in the IHE profile (such as gender, document status, etc.) the token shall carry a code, and may carry a namespace URI as defined in RFC 3986. For example: `?gender=M` or `?gender=http://hl7.org/fhir/v2/0001|M`.

- When the token is used to express a query parameter which filters on an attribute of type `CodeableConcept` or `Coding`, where the codification namespace is not stated in the IHE profile (such as document classification code, etc.) the token shall carry a code and namespace URI as defined in RFC 3986.

- When the token is used to express a query parameter which filters on an attribute of type `Identifier` the value shall carry, at minimum, one of namespace URI (as defined in RFC 3986), or identifier, or both. For example: `?identifier=urn:oid:1.2.3.4.5|`, `?identifier=urn:oid:1.2.3.4.5[123-203-FJ]` or `?identifier=|123-203-FJ`.

- The `namespace` portion of the token query parameter shall be represented as one of the following choices:
  
  a. A uniquely identifying URL which identifies the identity domain, or assigner, for example: “http://example.com/patientIds”
  
  b. An OID which identifies the identity domain represented as a URI with scheme “urn:oid:”, for example: “urn:oid:1.2.3.4.5.6”
  
  c. A URI containing the CX.4.1 (assigning authority name) value prefixed with a validURN.

Z.2.3 String Parameters

HL7 FHIR defines matching semantics for query parameters of type `string` as case and accent insensitive, wildcard matches (see FHIR Section 2.2.2). Under these matching rules a query
parameter value of “mAle” would match “males” and “MALE” as both contain the string “male”.

It may not be possible for implementers to perform this style of matching (for example: acting as a simple relay to an HL7v2 system) therefore, for the purposes of IHE profile implementation, implementers may perform exact matching on query parameters of type `string` and shall indicate the preference to use the “:exact” modifier in the Conformance Resource. For example, an implementation wishing to indicate the parameter “family” only supports exact matches may indicate this via:

```json
"searchParam" : [
 ...
 {
 "name": "family:exact",
 "type": "string"
 },
]
```

### Z.3 Conformance Resource Profile

HL7 FHIR allows service implementers to publish a Conformance Resource describing the resources, transport, formats, and operations that can be performed on a series of resources for the service instance. This capability shall be supported on all IHE FHIR based profile implementations.

- All servers (implementers exposing FHIR resources on a URL) shall expose one Conformance Resource (Defined in FHIR Section 6.12) per application endpoint (i.e., an endpoint where IHE services are exposed).
- All conformance resources shall be obtainable via an HTTP OPTIONS operation against the application endpoint (example: `http://<authority>/<path>/`) and via an HTTP GET on the Conformance resource on the application endpoint (example: `http://<authority>/<path>/Conformance`).
- The conformance resource shall contain the list of all resources, operations, response formats, and query parameters supported by that IHE actor on the endpoint.
- Each resource stated in the Conformance Resource shall contain a link to the Profile Resource which describes the IHE constraints on the FHIR Resource. For example, a Conformance Resource containing a description of the Patient resource (for PDQm) would contain a link to the PDQm Profile resource.

### Z.4 Profile Resource Profile

HL7 FHIR allows service implementers to publish a Profile Resource describing the constraints, terminology bindings, extensions and search parameters supported for a particular resource. This Profile Resource allows consumers to determine the capabilities and data requirements of a
particular FHIR based service. Because this capability is useful for expressing IHE profiles, IHE has placed the following requirements on the use of the Profile Resource:

- All servers (implementers which support one or more IHE profiles) shall expose one FHIR Profile Resource (defined in FHIR Section 6.14) for each FHIR based IHE profile the server supports.
- Servers shall identify each profile resource implementing a particular IHE profile by its profile short name.
- Servers shall make the FHIR Profile Resource accessible to consumer actors via an HTTP GET operation on a URL matching the pattern:
  \[ http://<authority>/<path>/Profile/<name> \]
  For example; A PDQm implementation profile would be accessible via an HTTP GET on resource “http://<authority>/<path>/Profile/pdqm”.

### Z.5 Resource Reference URIs in FHIR

FHIR Resources are related to one another via the use of a resource reference (See FHIR Section 1.12.3). In IHE transactions contained within the technical framework, these references appear as Resource(Type) types where (Type) references the type of resource being referenced. These resource references are expressed using a reference URL which points to the specified instance of the resource.

In this section we discuss how the IT Infrastructure profiles the referencing of resources in FHIR base profiles.

- The resource URL contained in the reference property shall represent a location where a consumer of the resource could identify and de-reference the intended resource being referenced.
Appendix E

Add the following section to the end of Appendix E replacing E.X with the last available number (for example E.4):

E.3 FHIR Identifier Type

The Health Level 7 Fast Health Interoperable Resources (HL7 FHIR) standard uses the data type Identifier to express an identifier that uniquely identifies a thing or object (see HL7 FHIR 1.13.0.11) including medical record number or patient identifiers. This concept is different than the resource identifier which is an assigned identifier for a particular resource appearing in a request URL (a resource identifier may also be represented as an Identifier instance however).

We discuss here how IHE profiles use the Identifier data type to express patient identifiers in FHIR resources. Within the text of this section, all requirements for the Identifier data type are specified solely in the context of patient identifier expression.

Since IHE adds additional constraints to the Identifier data type, requirements for populating its elements vary slightly depending on what actor is originating a transaction, in which Patient ID is expressed.

The FHIR Identifier type introduces a new mechanism for conveying the originating system of a particular identifier. Whereas HL7 Version 2 and Version 3 messages identify an assigning organization as a HD or an OID in the “root” attribute respectively, HL7 FHIR permits the use of a URI. This may require some configuration on the part of actors to correctly map a URL to an OID or HD to maintain consistency with other actors which are not implementing the FHIR specification.

IHE imposes the following restrictions on the Identifier type:

- Actors may expose the assigningAuthorityName (the name of the organization which assigned the identifier) via the assigner attribute of the Identifier data type. When provided, the actor shall at minimum, populate the display attribute.

- Identity domains shall always be qualified by an identified system attribute. The use of the value “urn:ietf:rfc:3986” in system (which specifies the value of the identifier is already globally unique) is prohibited in the scope of patient identities. The system attribute shall be represented as one of the following choices:
  a. A uniquely identifying URL which identifies the identity domain, or assigner, for example: “http://example.com/patientIds”
  b. An OID which identifies the identity domain represented as a URI with scheme “urn:oid:”, for example: “urn:oid:1.2.3.4.5.6”
  c. A URI containing the CX.4.1 (assigning authority name) value prefixed with a valid URN.
Rename appendix M as follows:

Appendix M Using Patient Demographics Query in a Multi-Domain Environment

Appendix M Patient Demographics Query Implementation Guidance

Add the following section to the end of Appendix M:

M.4 Data Elements Patient Demographics Query Profiles

This section describes the data elements that are used in IHE profiles designed for the querying of patient demographics (Patient Demographics Query profiles) including PDQ, PDQv3, and PDQm.

While the physical representatives of these data elements may differ, the common set of elements and query parameters can be described using abstract terminology. Appendix M.4 explains the data elements and query parameters used in PDQ Profiles from an abstract definition standpoint, and then provides a map between the three profiles’ implementation specific concept.

M.4.1 Patient Demographics Query Data Fields

Table M.4.1-1 outlines the abstract demographics fields which are common to all Patient Demographics Query profiles.

<table>
<thead>
<tr>
<th>Field</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier List</td>
<td>Provides one or more identifiers that can be used to uniquely identify the patient within a medical system.</td>
</tr>
<tr>
<td>Name(s)</td>
<td>Identifies the patient’s preferred, legal, or alias names.</td>
</tr>
<tr>
<td>Date / Time of Birth</td>
<td>Identifies the date on which the patient was born.</td>
</tr>
<tr>
<td>Gender</td>
<td>Identifies the patient’s gender used for administrative purposes.</td>
</tr>
<tr>
<td>Address(es)</td>
<td>Identifies the patient’s associated addresses (home, work, etc.)</td>
</tr>
<tr>
<td>Telecommunications Address(es)</td>
<td>Identifies the patient’s phone number, fax number, email addresses and other means of telecommunicating with the patient.</td>
</tr>
<tr>
<td>Language(s) of communication</td>
<td>Identifies languages which can be used when communicating with the patient.</td>
</tr>
<tr>
<td>Marital Status</td>
<td>Identifies the patient’s marital status at time of last update (married, divorced, etc.)</td>
</tr>
<tr>
<td>Non-Medical Identifiers</td>
<td>Identifies additional identifiers associated with the patient which are not used for medical purposes (ex: driver’s license, social insurance number, etc.)</td>
</tr>
<tr>
<td>Death Date/Time</td>
<td>Identifies the time at which the patient died.</td>
</tr>
</tbody>
</table>
Table M.4.1-2 provides a mapping between these abstract data elements and their transaction specific fields.

**Table M.4.1-2: Patient Demographics Data Elements (concrete)**

<table>
<thead>
<tr>
<th>Abstract Field</th>
<th>PDQ</th>
<th>PDQ HL7v3</th>
<th>PDQm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier List</td>
<td>PID.3 and PID.18</td>
<td>id</td>
<td>identifier</td>
</tr>
<tr>
<td>Name(s)</td>
<td>PID.5 and PID.9</td>
<td>name</td>
<td>name</td>
</tr>
<tr>
<td>Date / Time of Birth</td>
<td>PID.7</td>
<td>birthTime</td>
<td>birthDate</td>
</tr>
<tr>
<td>Gender</td>
<td>PID.8</td>
<td>administrativeGenderCode</td>
<td>gender</td>
</tr>
<tr>
<td>Address(es)</td>
<td>PID.11</td>
<td>addr</td>
<td>address</td>
</tr>
<tr>
<td>Telecommunications Address(es)</td>
<td>PID.13 and PID.14</td>
<td>telecom</td>
<td>telecom</td>
</tr>
<tr>
<td>Language(s) of communication</td>
<td>PID.15</td>
<td>languageCommunication</td>
<td>communication</td>
</tr>
<tr>
<td>Marital Status</td>
<td>PID.16</td>
<td>maritalStatusCode</td>
<td>maritalStatus</td>
</tr>
<tr>
<td>Non-Medical Identifiers</td>
<td>PID.19 and PID.20</td>
<td>asOtherIds</td>
<td>identifier</td>
</tr>
<tr>
<td>Death Date/Time</td>
<td>PID.29</td>
<td>deceasedTime</td>
<td>deceasedDateTime</td>
</tr>
<tr>
<td>Mother’s Maiden Name</td>
<td>PID.6</td>
<td>personalRelationship.name</td>
<td>See ITI TF-2c: 3.78.4.2.2.2</td>
</tr>
<tr>
<td>Patient Birth Order</td>
<td>PID.25</td>
<td>multipleBirthOrderNumber</td>
<td>multipleBirthInteger</td>
</tr>
</tbody>
</table>

**M.4.2 Patient Demographics Query Parameters**

Table M.4.2-1 outlines the demographics query parameters which are common to all Patient Demographics Query profiles.

**Table M.4.2-1: Patient Demographics Query Parameters (abstract)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier List</td>
<td>Filters the result set to a list of patients whose identifiers match the provided identifiers.</td>
</tr>
<tr>
<td>Name</td>
<td>Filters the result set to a list of patients whose name (legal, maiden, alias, etc.) matches the provided value. The mechanisms for match are not specified but can include: exact match, pattern match, phonetic match, variant match, etc.</td>
</tr>
</tbody>
</table>
### Table M.4.2-2: Patient Demographics Query Parameters (concrete)

<table>
<thead>
<tr>
<th>Abstract Parameter</th>
<th>PDQ</th>
<th>PDQ HL7v3</th>
<th>PDQm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier List</td>
<td>@PID.3 and @PID.18</td>
<td>livingSubjectId</td>
<td>identifier</td>
</tr>
<tr>
<td>Name</td>
<td>@PID.5</td>
<td>livingSubjectName</td>
<td>given and family</td>
</tr>
<tr>
<td>Date / Time of Birth</td>
<td>@PID.7</td>
<td>livingSubjectBirthTime</td>
<td>birthdate</td>
</tr>
<tr>
<td>Gender</td>
<td>@PID.8</td>
<td>livingSubjectAdministrativeGender</td>
<td>gender</td>
</tr>
<tr>
<td>Address</td>
<td>@PID.11</td>
<td>patientAddress</td>
<td>address</td>
</tr>
<tr>
<td>Domains to be Returned</td>
<td>QPD-8</td>
<td>otherIDsScopingOrganization</td>
<td>See ITI TF-2c:3.78.4.1.2.4</td>
</tr>
<tr>
<td>Mother’s Maiden Name</td>
<td>@PID.6</td>
<td>mothersMaidenName</td>
<td>mothersMaidenName,given and mothersMaidenName,family</td>
</tr>
<tr>
<td>Patient Telecommunications Addresses</td>
<td>@PID.13</td>
<td>patientTelecom</td>
<td>telecom</td>
</tr>
</tbody>
</table>

### Volume 2 Namespace Additions

No new terms needed.